|
|
求使得 n! 的最后 90 位全是 0 的最小正整数 n
|
舍尾计算,假设[n/5]=90,n';=450,则n<=450<625;假设n"=125,则[n/5]+[n/25]+[n/125]=31<90,可见n>125.则有:
[n/5]+[n/25]+[n/125]=90
fungarwai曾经提供了取整运算的思维方法,取整与舍尾略为不同,下面研究舍尾计算的转换
设[x]=u,则x=u+k,显然,u为整数,k和u正负性相同,k的绝对值<1
[n/5]+[n/25]+[n/125]=90
1>a,b,c>=0
[n/5]+[n/25]+[n/125]
=n/5-a+n/25-b+n/125-c
=n/5+n/25+n/125-a-b-c
=90
n/5+n/25+n/125=90+(a+b+c)
31n=125(90+(a+b+c))
31是质数,11250+125(a+b+c)是31的倍数;
0<=(a+b+c)<3
0<=125(a+b+c)<375
11250<=31n<11625
363<=n<375
363至374中关心365和370即可,答案是二中择一.试验:
1) 365
[n/5]+[n/25]+[n/125]=73+14+2=89
2) 370
[n/5]+[n/25]+[n/125]=74+14+2=90
答案:370
|
|