数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 4021|回复: 5

x1,x2,…,x9 是依次排列的九盏灯,只有当 x(i-1) 开灯时才能开关 xi,问一些有关问题

[复制链接]
发表于 2020-1-21 09:34 | 显示全部楼层 |阅读模式
請問計數問題
有一种不太成熟的想法:1、不管什么状态下一步都只有两种或一种可变状态,且统计上平均,故可得结论每种状态下可变状态为3/2种是嗎?;
2、若有N盏灯,每盏灯两种状态,共2^N种状态;3、若最少变换,不会经过重复状态。
结论:N盏灯从任一状态变到其他状态最多经过2/3*2^N种,考虑到可能不能整除,再取整。

請問為什麼?謝謝老師。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2020-1-23 23:58 | 显示全部楼层
  x1,x2,…,x9 是从左到右依次排列的九盏灯,x1 在任何情况下都可以开关,

对 i=2,3,…,9 ,xi 必须在它的左边只有 x(i-1) 一盏灯开灯时,才能开关。

(1)如果所有灯都处于开灯状态,要将 x4 关闭,至少需要几次开关操作?

(2)如果除 x6 以外,所有灯处于开灯状态,要将所有灯都打开,至少需要几次

    开关操作?

  下面用 O 表示开灯状态,用 X 表示关灯状态。

(1)至少要操作 3 次,具体操作步骤如下:

     x1  x2  x3  x4  x5  x6  x7  x8  x9

     O   O   O   O   O   O   O   O   O

1.   O   X   O   O   O   O   O   O   O

2.   X   X   O   O   O   O   O   O   O

3.   X   X   O   X   O   O   O   O   O

(2)至少要操作 21 次,具体操作步骤如下:

     x1  x2  x3  x4  x5  x6  x7  x8  x9

     O   O   O   O   O   X   O   O   O

1.   O   X   O   O   O   X   O   O   O

2.   X   X   O   O   O   X   O   O   O

3.   X   X   O   X   O   X   O   O   O

4.   O   X   O   X   O   X   O   O   O

5.   O   O   O   X   O   X   O   O   O

6.   X   O   O   X   O   X   O   O   O

7.   X   O   X   X   O   X   O   O   O

8.   O   O   X   X   O   X   O   O   O

9.   O   X   X   X   O   X   O   O   O

10.  X   X   X   X   O   X   O   O   O

11.  X   X   X   X   O   O   O   O   O

12.  O   X   X   X   O   O   O   O   O

13.  O   O   X   X   O   O   O   O   O

14.  X   O   X   X   O   O   O   O   O

15.  X   O   O   X   O   O   O   O   O

16.  O   O   O   X   O   O   O   O   O

17.  O   X   O   X   O   O   O   O   O

18.  X   X   O   X   O   O   O   O   O

19.  X   X   O   O   O   O   O   O   O

20.  O   X   O   O   O   O   O   O   O

21.  O   O   O   O   O   O   O   O   O
回复 支持 反对

使用道具 举报

发表于 2020-1-24 13:02 | 显示全部楼层
本帖最后由 王守恩 于 2020-1-24 13:27 编辑
luyuanhong 发表于 2020-1-23 23:58
题  x1,x2,…,x9 是从左到右依次排列的九盏灯,x1 在任何情况下都可以开关,

对 i=2,3,…,9 ,xi 必须在 ...


题  x1,x2,…,xn 是从左到右依次排列的n盏灯,x1 在任何情况下都可以开关,
对 i=2,3,…,n ,xn 必须在它的左边只有 x(n-1) 一盏灯开灯时,才能开关。
如果所有灯都处于开灯状态,要将 xn关闭,至少需要几次开关操作?

先从简单说起。
要将 x1 关闭,至少需要 1 次开关操作
要将 x2 关闭,至少需要 1 次开关操作
要将 x3 关闭,至少需要 2 次开关操作
要将 x4 关闭,至少需要 3 次开关操作
要将 x5 关闭,至少需要 6 次开关操作
要将 x6 关闭,至少需要 11 次开关操作
要将 x7 关闭,至少需要 22 次开关操作
要将 x8 关闭,至少需要 43 次开关操作
要将 x9 关闭,至少需要 86 次开关操作

Table[Ceiling[2^n/3], {n, 0, 14}]
xn={1, 1, 2, 3, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462}

Table[(2^n + 2 - Mod[n, 2])/3, {n, 0, 14}]
xn={1, 1, 2, 3, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462}

Table[(2^n + 3 - Cos[n*\[Pi]])/6, {n, 1, 15}]
xn={1, 1, 2, 3, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462}

LinearRecurrence[{2, 1, -2}, {1, 1, 2}, 15]
xn={1, 1, 2, 3, 6, 11, 22, 43, 86, 171, 342, 683, 1366, 2731, 5462}

点评

王先生,新年快乐!鼠年大吉。  发表于 2020-1-24 14:18
回复 支持 反对

使用道具 举报

发表于 2020-1-24 14:16 | 显示全部楼层
luyuanhong 发表于 2020-1-23 23:58
题  x1,x2,…,x9 是从左到右依次排列的九盏灯,x1 在任何情况下都可以开关,

对 i=2,3,…,9 ,xi 必须在 ...



陆老师好,新年快乐!鼠年大吉。
回复 支持 反对

使用道具 举报

发表于 2020-1-30 10:29 | 显示全部楼层
luyuanhong 发表于 2020-1-23 23:58
题  x1,x2,…,x9 是从左到右依次排列的九盏灯,x1 在任何情况下都可以开关,

对 i=2,3,…,9 ,xi 必须在 ...

题  x1,x2,…,xn 是从左到右依次排列的n盏灯,x1 在任何情况下都可以开关,
对 i=2,3,…,n ,xn 必须在它的左边只有 x(n-1) 一盏灯开灯时,才能开关。
如果所有灯都处于开灯状态,要将 xn关闭,至少需要几次开关操作?
操作 0 次,a(00)=0
操作 1 次,a(01)=1
操作 2 次,a(02)=11
操作 3 次,a(03)=01
操作 4 次,a(04)=011
操作 5 次,a(05)=111
操作 6 次,a(06)=101
操作 7 次,a(07)=001
操作 8 次,a(08)=0011
操作 9 次,a(09)=1011
操作10次,a(10)=1111
操作11次,a(11)=0111
操作12次,a(12)=0101
操作13次,a(13)=1101
操作14次,a(14)=1001
操作15次,a(15)=0001
操作16次,a(16)=00011
操作17次,a(17)=10011
操作18次,a(18)=11011
操作19次,a(19)=01011
操作20次,a(20)=01111
操作21次,a(21)=11111
操作22次,a(22)=10111
操作23次,a(23)=00111
操作24次,a(24)=00101
操作25次,a(25)=10101
操作26次,a(26)=11101
操作27次,a(27)=01101
操作28次,a(28)=01001
操作29次,a(29)=11001
操作30次,a(30)=10001
操作31次,a(31)=00001
操作32次,a(32)=000011
操作33次,a(33)=100011
操作34次,a(34)=110011
操作35次,a(35)=010011
操作36次,a(36)=011011
操作37次,a(37)=111011
操作38次,a(38)=101011
操作39次,a(39)=001011
操作40次,a(40)=001111
操作41次,a(41)=101111
操作42次,a(42)=111111
操作43次,a(43)=011111
操作44次,a(44)=010111
操作45次,a(45)=110111
操作46次,a(46)=100111
操作47次,a(47)=000111
操作48次,a(48)=000101
操作49次,a(49)=100101
操作50次,a(50)=110101
操作51次,a(51)=010101
操作52次,a(52)=011101
操作53次,a(53)=111101
操作54次,a(54)=101101
操作55次,a(55)=001101
操作56次,a(56)=001001
操作57次,a(57)=101001
操作58次,a(58)=111001
操作59次,a(59)=011001
操作60次,a(60)=010001
操作61次,a(61)=110001
操作62次,a(62)=100001
操作63次,a(63)=000001
操作64次,a(64)=0000001
操作65次,a(65)=1000001
操作66次,a(66)=1100001
操作67次,a(67)=0100001
操作68次,a(68)=0110001
操作69次,a(69)=1110001
操作70次,a(70)=1010001
.............
问:操作 n 次,a(n)的通项公式可以有吗?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-28 01:02 , Processed in 0.082343 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表