数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 8349|回复: 11

回复蔡家雄老师的题

[复制链接]
发表于 2020-7-19 22:43 | 显示全部楼层 |阅读模式
蔡家雄老师出题:
解不定方程:63A^163+67B^167=73C^173+79D^179
答案是:
A=386389^(5171489k+2157431)*363321^(5171489k-2136723)*333459^(5171489k+1106041)*308133^(5171489k-1126749)*a^(5171489k+4314862)*b^(5171489k+898043)*(a-b)^(5171489k+2212082)*(2ab)^(5171489k-1126749)
B=386389^(5047621k+2105756)*363321^(5047621k-2085544)*333459^(5047621k+1079549)*308133^(5047621k-1099761)*a^(5047621k+4211512)*b^(5047621k+876533)*(a-b)^(5047621k+2159098)*(2ab)^(5047621k-1099761)
C=386389^(4872559k+2032724)*363321^(4872559k-2013213)*333459^(4872559k+1042108)*308133^(4872559k-1061619)*a^(4872559k+4065448)*b^(4872559k+846133)*(a-b)^(4872559k+2084216)*(2ab)^(4872559k-1061619)
D=386389^(4709233k+1964588)*363321^(4709233k-1945731)*333459^(4709233k+1007177)*308133^(4709233k-1026034)*a^(4709233k+3929176)*b^(4709233k+817771)*(a-b)^(4709233k+2014354)*(2ab)^(4709233k-1026034)
 楼主| 发表于 2020-7-20 06:10 | 显示全部楼层
补充一下,1#楼中,a、b、k均为正整数,且a>b。
另外,请老师们验证一下答案,我也抽时间检验。谢谢老师们!
回复 支持 反对

使用道具 举报

发表于 2020-7-20 08:42 | 显示全部楼层
谢谢程老师的解答!

只有像 A^163+B^171 = C^173+D^179,两边项数相同,并且各项的系数都是1,才解答最简单而无研究意义,

——但只要各项添加互质的系数,答案还是很复杂的。

非同次(幂指数互质)方程的程氏通解式是世界方程理论的宝库。
回复 支持 反对

使用道具 举报

发表于 2020-7-20 08:59 | 显示全部楼层
设 p, q 已知且互质,

求 p*A^p = q*B^q 的通解式?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-7-20 13:16 | 显示全部楼层
蔡老师说的是啊:
只有像 A^163+B^171 = C^173+D^179,两边项数相同,并且各项的系数都是1,才解答最简单而无研究意义,
——但只要各项添加互质的系数,答案还是很复杂的。

回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-7-20 13:20 | 显示全部楼层
蔡老师您好:
设 p, q 已知且互质,
求 p*A^p = q*B^q 的通解式?
您的这个题简单啊!学生我就不再去解了!我抽时间检验一下1#楼的答案。
谢谢老师关注!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-7-20 23:38 | 显示全部楼层
蔡老师您好:程氏高次不定方程的系数是任意正整数,不一定要整体互质。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-7-21 11:07 | 显示全部楼层
请老师审核!
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-7-22 21:02 | 显示全部楼层
1#楼的答案,检验正确。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-7-24 23:37 | 显示全部楼层
请老师们审核!谢谢老师!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-23 20:50 , Processed in 0.149718 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表