数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 5110|回复: 7

大卫 希尔伯特数学主张

[复制链接]
发表于 2020-8-12 05:35 | 显示全部楼层 |阅读模式
这是百度百科的词条:

一、形式主义原则:所有符号完全看做没有意义的内容,即使将符号、公式或证明的任何有意的意义或可能的解释也不管,而只是把它们看作纯粹的形式对象,研究它们的结构性质;
二、有限主义原则,即总能在有限机械步骤之内验证形式理论之内一串公式是否一个证明。应用数学方法于这样一个形式理论,避免涉及无穷的推断,这就排除了康托尔集合论的方法。这个思想是只应用靠得住的方法,因为要证明数学或其一部分无矛盾的方法是大家公认可靠的,整个数学才有牢固的基础。
一般认为形式主义的奠基人是希尔伯特,但是希尔伯特自己并不自命为形式主义者。并且,希尔伯特的思想有一个发展变化的过程,我们简单地介绍一下。希尔伯特是二十世纪最有影响的数学家,他不仅是数学上一些分支的公认权威,而且恐怕也是最后一位在几乎所有数学领域中都做出伟大贡献的全才。更重要的是,他对于数学基础问题有着长时期的持久关注,他的思想在现代数学也占有统治地位。
大卫·希尔伯特,1862年1月23日出生在东普鲁士的哥尼斯堡。他一直在家乡上学,1885年取得博士学位,1886年就任哥尼斯堡大学讲师。1888年因为解决了不变式理论中著名的“哥尔丹问题”开始在数学界崭露头角,1891年他升任副教授,1893年升任教授。1895年,他应克莱因之邀,任哥丁根大学教授,由此开辟了哥丁根大学的黄金时代。他在哥丁根大学任教至1930年退休,其间培养了各国数学家,单是他指导的博士论文就有五、六十篇。由于他的影响,哥丁根成为世界数学的中心,繁盛了三、四十年,一直到希特勒掌权后才迅速地衰落下去。晚年学生大都离开,他于1948年2月14在孤寂中逝世。
希尔伯特前期主要供献在不变式论方面。1895年左右,他写了代数数论的总结性巨著。二十世纪开始时,他的兴趣转向分析及物理学。从十九世纪末,他对数学基础做出重大贡献。为了方便起见,不妨把他关于数学基础和数理逻辑的主要著作开列如下:
1899年,《几何学基础》,本书多次宣印及再版,生前最后一版为第七版(1930年)。正文部分有中释本。
1900年,实数的公理化,以及“数学问题”
1904年,在海德堡国际数学家大会上的讲演—“论逻辑和算术的基础”
1917年,公理化思想
1922年,“数学的新基础”,以及“数学的逻辑基础”
1925年,论无穷
1927年,数学基础
1928年“数学基础问题”在意大利波洛那国际数学家大会上讲演;《理论逻辑纲要》(同阿克曼台著),本书很快成为标准著作。1938年第二版,1949年第三版,有中译本,莫绍接译《数理逻辑基础》,1959年第四版,阿克曼做了很大的改动。
1930年,“初等数论基础”“逻辑及对自然的认识”
1931年,“排中律的证明”
1934年,《数学基础》Ⅰ;1939年,《数学基础》Ⅱ,这两本书与贝纳斯合著
 楼主| 发表于 2020-8-12 05:37 | 显示全部楼层
从希尔伯特的著作看来,希尔伯特提出了大部分形式主义观点,但他并没有把它们绝对化。他的观点有些地方同逻辑主义、直觉主义有着共同之处。这反映出某种矛盾,应该说这种矛盾是数学家的哲学思想上的矛盾。
关于数学中的存在,他认为不限于感觉经验的存在。在物理世界中,他认为没有无穷小、无穷大和无穷集合,但是在数学理论的各个分支中却都有无穷集合,如自然数的集合,一个线段里所有点的集合等等。这种不是经验能够直接验证的对象,他称之为“理想元素”。引进理想元素的方法在数学中其实由来已久,比如代数中虚数的引进,几何中无穷点的引进,微积分中无穷小与无穷大的引进等等。但是理想元素的引进必须不把矛盾带到原来的较窄狭的领域内。由于理想元素不能靠直观经验来验证,只能靠逻辑来验证,因此合理性的唯一判据就是无矛盾性。这种无矛盾性的真理观实际上是形式主义基本论点。
但是希尔伯特并不抱这种极端和绝对的看法,他看到引进新元素往往是对于旧元素的一种扩张,所以很自然地要求扩张之后增加的新元素仍能保留旧元素的大部分基本性质,就象数的扩张仍能使加法交换律保持成立。当然这样也就在一定意义下限制了扩张的任意性,这也是因为对于搞研究的数学家来讲,引进新概念是为了需要,而不是“游戏”,所以希尔伯特还认为“需要有相应的成果”,而且这是“至高无上的裁判”。把这个标准弄进来,反而使得标准变得模糊不清。
但是在什么情况下,关于理想元素的命题为真呢?这个问题,希尔伯特不认为每个个公式都必须得到验证,每一个概念都必须得到解释,然后通过直观验证。
在1900年的《论数的概念中》,希尔伯特提议用公理化方法来代替“生成的”方法。在《几何学基础》中,希尔伯特超过解析几何选出的算术模型来证明他的几何公理的无矛盾性。这样证明的是相对无矛盾性,也就是把几何学的无矛盾性归于实数的算术公理的无矛盾性。于是他在1990年国际数学家大会上把算术公理的无矛盾性列为他那著名23个问题中的第二个。他没有指出任何解决这个问题的途径,而只是强调相对无矛盾性的证明没有问题。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-12 05:41 | 显示全部楼层
不久,罗素悖论变得众所周知,从而无矛盾性问题变得更加紧迫。于是,希尔伯特在1904年在德国海德堡召开的国际数学家大会上提出第一个证明算术无矛盾性的打算。事实上,这是现代这方面研究的原型。他的草案是:要证明某些初等公式具有无矛盾性,并且推演规则传递这个性质。
在这篇题为《论逻辑和算术的伪基础》的报告开头,希尔伯特评论对于算术基础的不同看法。他认为,克洛耐克是教条主义者,因为他原原本本地接受整数及其所有重要性质,他不再深入下去探求整数的基础。德国科学家赫姆霍茨是经验主义者,按照他的说法,任意大的数不能够由我们的经验得出,因此是不存在的。另外有一些人,特别是德国数学家克里斯多弗张反对克洛耐克的观点。他们认为,要是没有无理数的概念,整个数学分析就势必要垮掉。于是他们企图找寻正面的、肯定的性质来确认无理数的存在。但是,他认为这种观点是不彻底的,因此说他们是机会主义的。这几种观点,希尔伯特都表示反对。
希尔伯特认为比较深入的观点是下面几种:一是弗雷格的逻辑主义,他把数学规则建立在逻辑的基础上;二是戴德金的先验主义,他是根据哲学上的论证来推断无穷的存在,不过他对数的论述中包含着“所有对象的集合”这类矛盾了;三是康托尔的主观主义观点,他清楚地区分“相容集”及“不相容集”。但是他没有提供明显的判据,因此缺乏客观的可靠性。
希尔伯特认为所有困难都可以通过给数的概念建立完全而严格的基础而得到克服,这就是公理化方法。1904年以后,希尔伯特把主要精力放在研究积分方程等分析问题以及物理学公理此等方面,没有发表什么数学基础方面的著作。这时,各种流派进行的激烈斗争,也不能不使希尔伯特关心。尤其是布劳威尔直觉主义的出现,他感到对于整个数学的生存和发展是个极大的威胁,于是他开始投入战斗。
从1917年起的二十多年时间里,他为了挽救古典数学竭尽全力。1917年他在苏黎世发表一篇演说,题目是“公理思想”。这篇文章全面叙述了一些与认识论有关的问题,如数论和集合论的无矛盾性,每个数学问题的原则上可解性,找出数学说明的单纯性,的标准数学中内容与形式表示的关系,数学问题通过有限步骤的可判定性问题。这些问题预示着后来数理逻辑的发展。他认为,要想深入研究就必须对数学证明的概念进行深入的研究。既然逻辑推理可以符号化,进行数学的研究,为什么证明不行呢?他提出了证明论的一般思想和目标,但是没有具体化。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-12 11:41 | 显示全部楼层
本帖最后由 elim 于 2020-8-11 20:46 编辑

希尔伯特他第一篇证明论的工作是1922年发表的,在"数学的新基础-第一篇"中,他论述如何把数论用有限方法讨论,而数学本身却一般须用超穷方法。
回复 支持 反对

使用道具 举报

发表于 2020-8-12 13:28 | 显示全部楼层
elim 吃洋人的洋屎已经到了痴迷的程度,
回复 支持 反对

使用道具 举报

发表于 2020-8-12 14:46 | 显示全部楼层
有关无穷的东西,不能只看表面现象好像是没完没了,没意义等。。。如果这样的话,就会陷在里面出不来了。打死也无法理解为什么1/3=0.333...,往往得换个层面看问题。。。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-12 15:08 | 显示全部楼层
有限形式表达的无穷才是有确定意义的.例如0.999,{zC;|z|=1}等等.
换句话说,jzkyllcjl 需要沒完没了书写的东西在数学中是没有意义,或者不存在的.
回复 支持 反对

使用道具 举报

 楼主| 发表于 2020-8-12 15:12 | 显示全部楼层
极限的定义也是对一种无穷性质的有限性刻划.
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-11 06:19 , Processed in 0.075805 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: