|
本帖最后由 王守恩 于 2020-9-25 09:33 编辑
王守恩 发表于 2020-9-18 07:34
题目看不懂。
与下面的题目有关系吗?
\(\Table\bigg[N\bigg[\displaystyle\sum_{k=1}^{9}\frac{1}{k^{(n+1)/n}}\bigg], (n, 1, 9)\bigg]\)
{1.53977, 1.96371, 2.18474, 2.31704, 2.40462, 2.46674, 2.51305, 2.54889, 2.57744}
\(\Table\bigg[N\bigg[\displaystyle\sum_{k=1}^{99}\frac{1}{k^{(n+1)/n}}\bigg], (n, 1, 9)\bigg]\)
{1.63488, 2.41187, 2.95353, 3.32862, 3.59905, 3.80194, 3.95929, 4.08469, 4.18688}
\(\Table\bigg[N\bigg[\displaystyle\sum_{k=1}^{999}\frac{1}{k^{(n+1)/n}}\bigg], (n, 1, 9)\bigg]\)
{1.64393, 2.54911, 3.30089, 3.88371, 4.33551, 4.69169, 4.97802, 5.21246, 5.40758}
\(\Table\bigg[N\bigg[\displaystyle\sum_{k=1}^{9999}\frac{1}{k^{(n+1)/n}}\bigg], (n, 1, 9)\bigg]\)
{1.64483, 2.59237, 3.46169, 4.19511, 4.79913, 5.29654, 5.70962, 6.05640, 6.35080}
\(\Table\bigg[N\bigg[\displaystyle\sum_{k=1}^{99999}\frac{1}{k^{(n+1)/n}}\bigg], (n, 1, 9)\bigg]\)
{1.64492, 2.60605, 3.53630, 4.37018, 5.09158, 5.70854, 6.23603, 6.68914, 7.08094}
\(\Table\bigg[N\bigg[\displaystyle\sum_{k=1}^{999999}\frac{1}{k^{(n+1)/n}}\bigg], (n, 1, 9)\bigg]\)
{1.64493, 2.61038, 3.57094, 4.46862, 5.27610, 5.98922, 6.61487, 7.16362, 7.64625}
\(\Table\bigg[N\bigg[\displaystyle\sum_{k=1}^{\infty}\frac{1}{k^{(n+1)/n}}\bigg], (n, 1, 9)\bigg]\)
{1.64493, 2.61238, 3.60094, 4.59511, 5.59158, 6.58922, 7.58752, 8.58624, 9.58525}
\(\Table\bigg[\displaystyle\sum_{k=1}^{\infty}\frac{1}{k^{(n+1)/n}}, (n, 1, 9)\bigg]\)
{\[pi]^2/6, Zeta[3/2], Zeta[4/3], Zeta[5/4], Zeta[6/5], Zeta[7/6], Zeta[8/7], Zeta[9/8], Zeta[10/9]} |
|