|
本帖最后由 王守恩 于 2020-11-9 19:44 编辑
电脑是这样出来的,有兴趣的不妨欣赏一下。
1,\(\displaystyle\prod_{k=1}^{1009}\bigg(1+\frac{2}{(2k+1)^3}\bigg)\)
1.1060942341644551225679854213644773065200754073846
2,\(\displaystyle\prod_{k=1}^{\infty}\bigg(1+\frac{2}{(2k+1)^3}\bigg)\)
1.10609436970190620636951610859849126125138224376556
3,\(\displaystyle\prod_{k=1}^{\infty}\bigg(1+\frac{2}{(2k+1)^3}\bigg)\)// FullSimplify
\[Pi]^(3/2)/(2 (-1 + 2^(2/3)) Gamma[1/2 (3 - (-2)^(1/3))]
Gamma[3/2 + (-(1/2))^(2/3)] Gamma[-(1/2) + 1/2^(2/3)])
4,\(\displaystyle\prod_{k=1}^{\infty}\bigg(1+\frac{1}{(k+n)^2}\bigg)\), {n, 0, 9}]
Sinh[\[Pi]]/\[Pi],
Sinh[\[Pi]]/(2 \[Pi]),
(2 Sinh[\[Pi]])/(5 \[Pi]),
(9 Sinh[\[Pi]])/(25 \[Pi]),
(144 Sinh[\[Pi]])/(425 \[Pi]),
(72 Sinh[\[Pi]])/(221 \[Pi]),
(2592 Sinh[\[Pi]])/(8177 \[Pi]),
(63504 Sinh[\[Pi]])/(204425 \[Pi]),
(4064256 Sinh[\[Pi]])/(13287625 \[Pi]),
(164602368 Sinh[\[Pi]])/(544792625 \[Pi])
5,\(\displaystyle\prod_{k=1}^{\infty}\bigg(1+\frac{1}{(k+n)^3}\bigg)\),{n, 0, 8}] // FullSimplify
Cosh[(Sqrt[3] \[Pi])/2]/\[Pi],
Cosh[(Sqrt[3] \[Pi])/2]/(2 \[Pi]),
(4 Cosh[(Sqrt[3] \[Pi])/2])/(9 \[Pi]),
(3 Cosh[(Sqrt[3] \[Pi])/2])/(7 \[Pi]),
(192 Cosh[(Sqrt[3] \[Pi])/2])/(455 \[Pi]),
(800 Cosh[(Sqrt[3] \[Pi])/2])/(1911 \[Pi]),
(57600 Cosh[(Sqrt[3] \[Pi])/2])/(138229 \[Pi]),
(7200 Cosh[(Sqrt[3] \[Pi])/2])/(17329 \[Pi]),
(409600 Cosh[(Sqrt[3] \[Pi])/2])/(987753 \[Pi])
6,\(\displaystyle\prod_{k=1}^{\infty}\bigg(1+\frac{2}{(k+n)^2}\bigg)\),{n, 0, 6}] // FullSimplify
Sinh[Sqrt[2] \[Pi]]/(Sqrt[2] \[Pi]),
Sinh[Sqrt[2] \[Pi]]/(3 Sqrt[2] \[Pi]),
(Sqrt[2] Sinh[Sqrt[2] \[Pi]])/(9 \[Pi]),
(Sqrt[2] Sinh[Sqrt[2] \[Pi]])/(11 \[Pi]),
(8 Sqrt[2] Sinh[Sqrt[2] \[Pi]])/(99 \[Pi]),
(200 Sqrt[2] Sinh[Sqrt[2] \[Pi]])/(2673 \[Pi]),
(400 Sqrt[2] Sinh[Sqrt[2] \[Pi]])/(5643 \[Pi])
7,\(\displaystyle\prod_{k=1}^{\infty}\bigg(1+\frac{2}{(2k+n)^3}\bigg)\),{n, 0, 4}] // FullSimplify
2^(2/3)/(Gamma[1/2^(2/3)] Gamma[1/2 (2 - (-2)^(1/3))] Gamma[1 + (-(1/2))^(2/3)]),
\[Pi]^(3/2)/(2 (-1 + 2^(2/3)) Gamma[1/2 (3 - (-2)^(1/3))]
Gamma[3/2 + (-(1/2))^(2/3)] Gamma[-(1/2) + 1/2^(2/3)]),
(4 2^(2/3))/(5 Gamma[1/2^(2/3)] Gamma[1/2 (2 - (-2)^(1/3))] Gamma[1 + (-(1/2))^(2/3)]),
-((27 \[Pi]^(3/2))/( 8 (1 + 2^(1/3) - 3 2^(2/3)) Gamma[1/2 (5 - (-2)^(1/3))]
Gamma[ 5/2 + (-(1/2))^(2/3)] Gamma[-(1/2) + 1/2^(2/3)])),
(128 2^(2/3))/(165 Gamma[1/2^(2/3)] Gamma[1/2 (2 - (-2)^(1/3))] Gamma[1 + (-(1/2))^(2/3)]) |
|