|
本帖最后由 王守恩 于 2020-11-9 19:13 编辑
我是在努力的学,囫囵吞枣的学。
1,\(\displaystyle\sum_{k = 0}^9\ \frac{k\ !\ (9-k)\ !}{9\ !}\)
2.3174603174603174603174603174603174603174603174603
2,\(\displaystyle\sum_{k = 0}^{99}\ \frac{k\ !\ (99-k)\ !}{99\ !}\)
2.0206276186376404507018372230648972081473845940980
3,\(\displaystyle\sum_{k = 0}^{999}\ \frac{k\ !\ (999-k)\ !}{999\ !}\)
2.0020060261510914616920523196497520380979351800807
4,\(\displaystyle\sum_{k = 0}^{9999}\ \frac{k\ !\ (9999-k)\ !}{9999\ !}\)
2.0002000600260150108293754695308950040215401801482
5,\(\displaystyle\sum_{k = a}^{\infty}\ \frac{k\ !\ (n-k)\ !}{n\ !}\){a, 0, 5}
Hypergeometric2F1[1, 1, -n, -1],
((-1 + n)! Hypergeometric2F1[1, 2, 1 - n, -1])/n!,
(2 (-2 + n)! Hypergeometric2F1[1, 3, 2 - n, -1])/n!,
(6 (-3 + n)! Hypergeometric2F1[1, 4, 3 - n, -1])/n!,
(24 (-4 + n)! Hypergeometric2F1[1, 5, 4 - n, -1])/n!,
(120 (-5 + n)! Hypergeometric2F1[1, 6, 5 - n, -1])/n!
6,\(\displaystyle\sum_{k = 0}^{\infty}\ \bigg(\frac{k\ !\ (n-k)\ !}{n\ !}\bigg)^a\){a, 1, 5}
Hypergeometric2F1[1, 1, -n, -1],
HypergeometricPFQ[{1, 1, 1}, {-n, -n}, 1],
HypergeometricPFQ[{1, 1, 1, 1}, {-n, -n, -n}, -1],
HypergeometricPFQ[{1, 1, 1, 1, 1}, {-n, -n, -n, -n}, 1],
HypergeometricPFQ[{1, 1, 1, 1, 1, 1}, {-n, -n, -n, -n, -n}, -1]
7,\(\displaystyle\lim_{n\to\infty}\sum_{k = 0}^{n}\ \frac{k\ !\ (n-k)\ !}{n\ !}\)
=Limit[-((I 2^(-1 - n) (\[Pi] - I Beta[2, 2 + n, 0]) Gamma[2 + n])/n!),n -> \[Infty]] |
|