|

楼主 |
发表于 2020-11-17 12:33
|
显示全部楼层
题:设\(\underset{\,}{\;}\;{\large\frac{x}{\ln(1+x)}}=a_0+a_1x+a_2x^2+\cdots,\;\;(|x|<1).\)
\(\qquad\)试证\(\,\;a_n^2>-a_na_{n+1}>0.\)
证:\(\because\;{\small\dfrac{d}{dt}\dfrac{a^t}{\ln a}}=a^t,\;\displaystyle{\small\frac{x}{\ln(1+x)}=\int}_0^1(1+x)^tdt={\small\sum_{n=0}^{\infty}}\big({\small\int}_0^1{\small\prod_{k=0}^{n-1}}(t-k)dt\big)\frac{x^n}{n!}\)
\(\therefore\quad a_n=\displaystyle{\small\int}_0^1{\small\frac{1}{n!}\big(\prod_{k=0}^{n-1}}(t-k)\big)dt.\;\;\)由此即知\(\;-\small\dfrac{a_{n+1}}{a_n}\in(0,1).\quad\small\square\) |
|