|

楼主 |
发表于 2020-12-5 13:50
|
显示全部楼层
题:已知\(\,(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=1.\;\)求\((x+y)^3.\)
解:令\(\;a=x+\sqrt{x^2+1},\;b=y+\sqrt{y^2+1},\;\)则
\(\qquad a =\frac{1}{b}=-y+\sqrt{y^2+1},\; a^{-1}=b,\; 2y=a^{-1}-a\)
\(\qquad\)对称地,\(\,2x = b^{-1}-b=a-a^{-1},\;\;\therefore\;\;x+y=0\)
\(\qquad(x+y)^3=0.\) |
|