|
我来抛块砖。
求\(\sqrt[3]{a+b\sqrt{c}}+\sqrt[3]{a-b\sqrt{c}}=1\) 全部正整数解
\(\ \ \ \ \ \ \sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)
\(\ \ \sqrt[3]{17+18\sqrt{5}}+\sqrt[3]{17-18\sqrt{5}}=1\)
\(\ \ \sqrt[3]{47+80\sqrt{5}}+\sqrt[3]{47-80\sqrt{5}}=1\)
\(\ \sqrt[3]{92+217\sqrt{5}}+\sqrt[3]{92-217\sqrt{5}}=1\)
\(\sqrt[3]{152+459\sqrt{5}}+\sqrt[3]{152-459\sqrt{5}}=1\)
\(\sqrt[3]{227+836\sqrt{5}}+\sqrt[3]{227-836\sqrt{5}}=1\)
\(\sqrt[3]{317+1378\sqrt{5}}+\sqrt[3]{317-1378\sqrt{5}}=1\)
\(a=\frac{15n^2-15n+4}{2}\)
\(b=\frac{10n^3-15n^2+9n-2}{2}\)
\(c=5\)
也可以这样:
LinearRecurrence[{3, -3, 1}, {2, 17, 47}, 20]
{2, 17, 47, 92, 152, 227, 317, 422, 542, 677, 827, 992, 1172, 1367, \
1577, 1802, 2042, 2297, 2567, 2852}
LinearRecurrence[{4, -6, 4, -1}, {1, 18, 80, 217}, 20]
{1, 18, 80, 217, 459, 836, 1378, 2115, 3077, 4294, 5796, 7613, 9775, \
12312, 15254, 18631, 22473, 26810, 31672, 37089}
|
|