数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 4131|回复: 0

试证\(\displaystyle\lim_{x\to\infty}((\ln\Gamma(x))'-\ln x)=0\)

[复制链接]
发表于 2020-12-14 05:53 | 显示全部楼层 |阅读模式
本帖最后由 elim 于 2020-12-13 16:08 编辑

题:试证\(\;{\displaystyle\lim_{x\to\infty}}\big({\large\frac{\Gamma'(x)}{\Gamma(x)}}-\ln x\big)=0.\)
证:\(\;\because\;\Gamma(x+1)=x\Gamma(x),\;\ln\Gamma(x+1)-\ln\Gamma(x)=\ln x.\,\)
\((^*)\quad\exists s\in(x,x+1):\,{(\ln\Gamma(z))'\big|_{z=s}=\large\frac{\Gamma'(s)}{\Gamma(s)}}=\ln x\).
\(\because\quad\;\ln\Gamma\,\)是凸函数,\(\,\Gamma'/\Gamma=(\ln\Gamma)'\) 严格增\((x>0)\),故据\((^*),\)
\(\qquad{\large\frac{\Gamma{\hspace{1px}}'(x)}{\Gamma(x)}}< \ln x< {\large\frac{\Gamma{\hspace{1px}}'(x+1)}{\Gamma(x+1)}}\implies\ln(x{\small-1})<{\large\frac{\Gamma{\hspace{1px}}'(x)}{\Gamma(x)}}<\ln x.\)
\(\therefore\quad\; 0>{\large\frac{\Gamma{\hspace{1px}}'(x)}{\Gamma(x)}}-\ln x>\ln(x-1)-\ln x=\ln(1-\frac{1}{\large x})\overset{x\to\infty}{\longrightarrow}0.\)
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-9-13 01:47 , Processed in 0.079794 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表