|
本帖最后由 elim 于 2020-12-15 22:49 编辑
对\(\,\varepsilon>0,\,\)有\(\,N\in\mathbb{N}\,\)使\(\,n>N\) 时有
\(\,f'(x_0)-\varepsilon < {\large\frac{f(b_n)-f(x_0)}{b_n-x_0}}< f'(x_0)+\varepsilon\) 且
\(\,f'(x_0)-\varepsilon < {\large\frac{f(x_0)-f(a_n)}{x_0-a_n}}< f'(x_0)+\varepsilon\)
故 \(\,f'(x_0)-\varepsilon < {\large\frac{f(b_n)-f(a_n)}{b_n-a_n}}< f'(x_0)+\varepsilon\)
即 \(\left|{{\large\frac{f(b_n)-f(a_n)}{b_n-a_n}}}-f'(x_0)\right|< \varepsilon\;(n>N)\) |
|