|
题:试证若\(\displaystyle\,f(x)=\sum_{n=1}^{\infty}f_n(x)\) 在\((0,\infty)\)的任意闭区间上正项一致收敛,
\(\displaystyle\int_0^{\infty}f,\;\int_0^{\infty}f_n\) 均收敛, 则\(\,\displaystyle\int_0^{\infty}\sum_{n=1}^{\infty}f_n(x)dx=\sum_{n=1}^{\infty}\int_0^{\infty}f_n(x)dx\) |
|