数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 4939|回复: 0

康托尔的无穷基数理论不成立

[复制链接]
发表于 2021-1-6 10:15 | 显示全部楼层 |阅读模式
无穷集合都具有对立统一的两个方面。这两个方面是:①一方面,无穷集合的元素个数都依赖于它们的通项构造法则,它们的元素个数都是无限增长着的趋向性极限性质的、想象性质的非正常实数+∞,它们也因此,才可以叫做无穷集合。②另一方面,无穷集合都具有“在任何有限时间内,都延续不到底的性质”;“一一对应法则”对无穷集合是进行不到底的操作,康托尔的“一一对应,元素个数就想等的无穷基数理论不成立”。所以,任何无穷集合都不是“已经构造完成了的实无穷”意义的无穷集合。无穷集合的上述两个性质,是相互依赖的,事实上,它的无穷性依赖于不可完成的性质,如果完成了就不会是无穷的;反过来,不可完成性也依赖于无穷性,如果是有穷的,那么就可以完成了。两个性质之间是相互斗争的,各有各的用处;分工合作才构成有用而正确的无穷集合理论。事实上,根据不可完成性,无穷集合的元素个数就不是定数,就不能提出康托儿的无穷序数与无穷基数理论;这样一来,康托儿提出的“连续统假设的大难题”就不存在了。根据无穷性,无穷集合的元素个数是无穷多的,依照习惯,理想自然数集合可以记作N,它能够满足生产实际的需要;依据笔者的定理1.中的第一点,还可以指出:理想自然数集合中的元素,都是可以写出的有限自然数;《非标准分析》中提出的大于N中所有自然数的无穷大自然数不存在,实践是检验真理的唯一标准,非标准分析中的那种无穷大自然数没有必要性(《非标准分析》无法解决它提出的“要解决第二次数学危机”的目的)。笔者的这种无穷集合理论是对立统一法则下的唯物辩证法、辩证逻辑性质的无穷集合理论。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-25 09:12 , Processed in 0.075338 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表