|
elim 网友: 在恩格斯在《反杜林论》《反杜林论》第一编“五、自然哲学、时间和空间”一节中,48页讲到:“杜林先生,永远做不到没有矛盾地思考现实的无限性。无限性是一个矛盾,而且充满着矛盾。无限纯粹是由有限组成的,这已经是矛盾,可是事情就是这样”;这说明:必须把无穷集合看作有穷集合序列的不可达到的广义极限性想象性事物。在《自然辩证法》228页恩格斯讲道:“数学家的方法常常奇怪的得到”正确的结果,但他们……。他们忘掉了:全部所谓纯粹数学都是研究抽象的,它的一切数量严格说来都是想象的数量,一切抽象在推到极端时就变成谬妄或自己的反面。数学的无限是从现实中借来的,……,而只能从现实中来说明,……。而这样一来,问题就说明了。为此,笔者称现实数量大小的绝对准表达符号(例如:0,1,2,3,……1/3,1/10,……,π,√2,……等)都是理想实数(简称为实数)。每一个无尽小数都是以理想实数的满足误差界(十的负n次幂分之一)的有尽位十进小数为项的不足近似值无穷数列的简写。无尽小数具有永远算不到底的事实,无尽小数本身不是实数,但无尽小数与理想实数之间,具有理论与实践、理想与现实、绝对准与近似之间的对立统一关系。笔者在文献[1]中已经改革了数学理论,但还需要进一步使用,理论与实践、理想与现实、精确与近似、无限与有限、零与非零足够小、形与数、直与曲之间的对立统一、分工合作的关系阐述数学理论”;这样以来就改善了数学理论。 |
|