|

楼主 |
发表于 2021-2-13 01:09
|
显示全部楼层
题:计算\(\,\displaystyle{\small\int\limits_{0}^{\infty}}\ln{\big({\small\frac{1}{x^{4}}}+1\big)}dx\)
解:\(\,\displaystyle{\small\int\limits_{0}^{\infty}}\ln{\big({\small\frac{1}{x^{4}}}+1\big)}dx=x\ln\big({\small\frac{1}{x^{4}}}+1\big)\bigg|_0^{\infty}+4\int_0^{\infty}\frac{dx}{1+x^4}\)
\(\qquad=\displaystyle 4\underset{\,}{\int_0^{\infty}}\frac{dx}{1+x^4}=\sqrt{2}\pi.\)
注记:由\(\;{\large\frac{2\sqrt{2}}{x^4+1}}=\small\bigg(\dfrac{x+\sqrt{2}}{x^2+\sqrt{2}x+1}-\dfrac{x-\sqrt{2}}{x^2-\sqrt{2}x+1}\bigg)\) 易见
\(\quad\displaystyle\int{\small\frac{dx}{x^4+1}}={\small\frac{1}{4\sqrt{2}}}\big(\ln{\small\frac{x^2+x\sqrt{2}+1}{x^2-x\sqrt{2}+1}}+2\arctan{\small\frac{x^2-1}{x\sqrt{2}}}\big)\small+C.\) |
|