数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 5110|回复: 5

剖析证明“哥德巴赫猜想”(1)

[复制链接]
发表于 2021-3-8 21:57 | 显示全部楼层 |阅读模式

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2021-3-9 04:11 | 显示全部楼层
本帖最后由 wangyangke 于 2021-3-8 20:31 编辑

雷明、王若仲、鲁思顺,程中战在哥德巴赫猜想方面的层次——

雷明垫底;雷明,一个叙述不清楚哥猜的人,说他的哥猜证明没有错误还不行,非得要说他证明了哥猜;
王若仲,讲义讲义,终究是屁;沉溺筛除、四则证哥猜;
鲁思顺坐——座中;有三愚蠢四无知之美实;
程中战居上,言语随意,有啥说啥、想到哪说到哪;虽不足和不全面或者坠为错误,倒也不失奇妙。



笑话————

继鲁思顺——定理:鲁思顺是个二百五!——之后,陕西雷明举重若轻,轻松证明哥德巴赫猜想

点评

“座中”此语甚妙。 原来“第一把交椅”就是这么来的!  发表于 2023-6-11 17:36
回复 支持 反对

使用道具 举报

发表于 2021-3-16 07:27 | 显示全部楼层
定理:王若仲认可的那个哥猜证明的证明人鲁思顺是个二百五。
回复 支持 反对

使用道具 举报

发表于 2023-6-11 16:40 | 显示全部楼层
文章摘要
对于“哥德巴赫猜想”,我们现在探讨一种简明的证明方法,即要证明任一不小于6的偶数均存在有“奇素数+奇素数”的情形,因为偶数2m=1+2m-1=2+2m-2=3+2m-3=…=2m-3+3=2m-2+2=2m-1+1=2m+0,m≥3;那么就可以通过埃拉托斯特尼筛法,整理归纳奇合数的情形,建立筛选数学模型,如下示意(上面/下面): 1 p0 p1 4 p2 p3 … … pt … … 2m-2 2m-1 2m / 2m-1 2m-2 … … pt … … p3 p2 4 p1 p0 1 0。在其中筛出下列情形:(1)在上面筛出所有偶数+图中的下面对应的偶数等于2m的情形;(2)在上面筛出所有的奇合数+图中的下面对应的奇数=2m的情形;(3)在下面筛出所有的奇合数+图中的上面对应的奇数=2m的情形;(4)再筛出1+2m-1和2m-1+1这两组。通过上述筛出程序后,若上图中至少还剩下一组,那么这一组必定是“奇素数+奇素数=2m”的情形。对于筛选数学模型,在筛选数学模型上按照埃拉托斯特尼筛法,不管偶数2m如何变化,利用奇合数的情形可以归纳出一定的筛出规律,根据筛出规律,在数学归纳法中又再用数学归纳法的方法来间接证明“哥德巴赫猜想”。

你说的是这篇吧?
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-6-11 17:30 | 显示全部楼层
发表在香港双清学术出版社《数学发现》上的那一篇。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-24 23:14 , Processed in 0.096184 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表