|
好题!
简单分析知\(\,f(x)=(1+\frac{1}{x})^{x+1}\) 在\(\,(-\infty,-1],\;(0,\infty)\)
上均严格单调减.\(\,f(-\infty)=e,\,f(-1)=0,\;f(0+)=\infty,\;f(\infty)=e.\)
\(\alpha=(1+\frac{1}{2019})^{2019}\in(2,e)\). 所以 \(f(x)=\alpha\) 恰有一个实数解
\(x\in (-\infty,-1)\). 令\(\,s = -x\) 则 \(f(x) = f(-s) = (1-\frac{1}{s})^{1-s}\)
\(=(1+\frac{1}{s-1})^{s-1}=(1+\frac{1}{2019})^{2019}.\quad\therefore\;s=2020\)
\((1+\frac{1}{\textbf{-}2020})^{-2020\textbf{+}1} = (1+\frac{1}{2019})^{2019}\).
所求实数解为 \(x=-2020.\quad\small\square\) |
|