数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 16965|回复: 24

求助,所有等号全部对齐,代码怎么调????

[复制链接]
发表于 2021-4-4 18:41 | 显示全部楼层 |阅读模式
本帖最后由 永远 于 2021-4-5 20:52 编辑

求助,所有等号全部对齐,代码怎么调????

  1. \[\begin{gathered}
  2.   \quad \quad \quad C = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {\overline {{P_{k - 1}}{P_k}} }  \\
  3.    = \mathop {\lim }\limits_{n \to \infty } \frac{\pi }{{2n}}\sum\limits_{k = 1}^n {\sqrt {{a^2}{{\sin }^2}\frac{{(2k - 1)\pi }}{{4n}} + {b^2}{{\cos }^2}\frac{{(2k - 1)\pi }}{{4n}}} }  \\
  4.    = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}{{\sin }^2}\theta  + {b^2}{{\cos }^2}\theta } \;d\theta }  \\
  5.    = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}\left( {1 - {{\cos }^2}\theta } \right) + {b^2}{{\cos }^2}\theta } } d\theta  \\
  6.    = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}{{\cos }^2}\theta  + {b^2}{{\cos }^2}\theta } } d\theta  \\
  7.    = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}\tfrac{{1 + \cos 2\theta }}{2} + {b^2}\tfrac{{1 + \cos 2\theta }}{2}} } d\theta  \\
  8.    = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - \tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
  9.    = \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
  10.    = \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2} + {b^2}}}{2} - \tfrac{{{a^2} - {b^2}}}{2}\cos 2\theta } } d\theta  \\
  11.    = \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{2{a^2} + 2{b^2}}}{4} - \tfrac{{2{a^2} - 2{b^2}}}{4}\cos 2\theta } } d\theta  \\
  12.    = \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2}}}{4} - \tfrac{{2\left( {a - b} \right)\left( {a + b} \right)}}{4}\cos 2\theta } } d\theta  \\
  13.    = \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2} - 2\left( {a - b} \right)\left( {a + b} \right)\cos 2\theta } } d\theta  \\
  14.    = \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2}\left[ {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } \right]} } d\theta  \\
  15.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } } d\theta  \\
  16.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - 2\lambda \cos 2\theta } } d\theta  \\
  17.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda \left( {{e^{2i\theta }} + {e^{ - 2i\theta }}} \right)} } d\theta  \\
  18.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
  19.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2}{e^{2i\theta  - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
  20.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + \lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
  21.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \left( {\lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
  22.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \lambda {e^{ - 2i\theta }}\left( {\lambda {e^{2i\theta }} - 1} \right)} } d\theta  \\
  23.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) - \lambda {e^{ - 2i\theta }}\left( {1 - \lambda {e^{2i\theta }}} \right)} } d\theta  \\
  24.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right)\left( {1 - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
  25.    = \frac{1}{2}\left( {a + b} \right){\int_0^{\frac{\pi }{2}} {\left( {1 - \lambda {e^{2i\theta }}} \right)} ^{\tfrac{1}{2}}}{\left( {1 - \lambda {e^{ - 2i\theta }}} \right)^{\tfrac{1}{2}}}d\theta  \\
  26.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;k}} } {\left( { - \lambda {e^{2i\theta }}} \right)^{\;k}}\sum\limits_{j = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;j}} {\left( { - \lambda {e^{ - 2i\theta }}} \right)^{\;j}}d\theta  \\
  27.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {(_{\;k}^{1/2}){{( - \lambda )}^k}{e^{2k{\kern 1pt} \theta {\kern 1pt} i}}} \sum\limits_{j = 0}^\infty  {(_{\;j}^{1/2}){{( - \lambda )}^j}{e^{ - 2j{\kern 1pt} \theta {\kern 1pt} i}}} d\theta }  \\
  28.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {\sum\limits_{j = 0}^\infty  {(_{\;k}^{1/2})(_{\;j}^{1/2}){{( - \lambda )}^{k + j}}{e^{2k\theta i}}{e^{ - 2j\theta i}}} } d\theta }  \\
  29.    = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}\cos [2(2k - n)\theta ]} } d\theta }  \\
  30.    = \frac{1}{2}\left( {a + b} \right)\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}} } \int_0^{\frac{\pi }{2}} {\cos [2(2k - n)\theta ]d\theta }  \\
  31.    = \frac{1}{2}\left( {a + b} \right)\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}} } \left\{ {\left. {\frac{1}{{2(2k - n)}}\sin [2(2k - n)\theta ]} \right|_0^{\frac{\pi }{2}}} \right\} \\
  32. \end{gathered} \]
复制代码


目前效果图,很不美观

\[\begin{gathered}
  \quad \quad \quad C = \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {\overline {{P_{k - 1}}{P_k}} }  \\
   = \mathop {\lim }\limits_{n \to \infty } \frac{\pi }{{2n}}\sum\limits_{k = 1}^n {\sqrt {{a^2}{{\sin }^2}\frac{{(2k - 1)\pi }}{{4n}} + {b^2}{{\cos }^2}\frac{{(2k - 1)\pi }}{{4n}}} }  \\
   = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}{{\sin }^2}\theta  + {b^2}{{\cos }^2}\theta } \;d\theta }  \\
   = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}\left( {1 - {{\cos }^2}\theta } \right) + {b^2}{{\cos }^2}\theta } } d\theta  \\
   = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}{{\cos }^2}\theta  + {b^2}{{\cos }^2}\theta } } d\theta  \\
   = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}\tfrac{{1 + \cos 2\theta }}{2} + {b^2}\tfrac{{1 + \cos 2\theta }}{2}} } d\theta  \\
   = \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - \tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
   = \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
   = \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2} + {b^2}}}{2} - \tfrac{{{a^2} - {b^2}}}{2}\cos 2\theta } } d\theta  \\
   = \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{2{a^2} + 2{b^2}}}{4} - \tfrac{{2{a^2} - 2{b^2}}}{4}\cos 2\theta } } d\theta  \\
   = \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2}}}{4} - \tfrac{{2\left( {a - b} \right)\left( {a + b} \right)}}{4}\cos 2\theta } } d\theta  \\
   = \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2} - 2\left( {a - b} \right)\left( {a + b} \right)\cos 2\theta } } d\theta  \\
   = \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2}\left[ {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } \right]} } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - 2\lambda \cos 2\theta } } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda \left( {{e^{2i\theta }} + {e^{ - 2i\theta }}} \right)} } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2}{e^{2i\theta  - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + \lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \left( {\lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \lambda {e^{ - 2i\theta }}\left( {\lambda {e^{2i\theta }} - 1} \right)} } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) - \lambda {e^{ - 2i\theta }}\left( {1 - \lambda {e^{2i\theta }}} \right)} } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right)\left( {1 - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
   = \frac{1}{2}\left( {a + b} \right){\int_0^{\frac{\pi }{2}} {\left( {1 - \lambda {e^{2i\theta }}} \right)} ^{\tfrac{1}{2}}}{\left( {1 - \lambda {e^{ - 2i\theta }}} \right)^{\tfrac{1}{2}}}d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;k}} } {\left( { - \lambda {e^{2i\theta }}} \right)^{\;k}}\sum\limits_{j = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;j}} {\left( { - \lambda {e^{ - 2i\theta }}} \right)^{\;j}}d\theta  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {(_{\;k}^{1/2}){{( - \lambda )}^k}{e^{2k{\kern 1pt} \theta {\kern 1pt} i}}} \sum\limits_{j = 0}^\infty  {(_{\;j}^{1/2}){{( - \lambda )}^j}{e^{ - 2j{\kern 1pt} \theta {\kern 1pt} i}}} d\theta }  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {\sum\limits_{j = 0}^\infty  {(_{\;k}^{1/2})(_{\;j}^{1/2}){{( - \lambda )}^{k + j}}{e^{2k\theta i}}{e^{ - 2j\theta i}}} } d\theta }  \\
   = \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}\cos [2(2k - n)\theta ]} } d\theta }  \\
   = \frac{1}{2}\left( {a + b} \right)\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}} } \int_0^{\frac{\pi }{2}} {\cos [2(2k - n)\theta ]d\theta }  \\
   = \frac{1}{2}\left( {a + b} \right)\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}} } \left\{ {\left. {\frac{1}{{2(2k - n)}}\sin [2(2k - n)\theta ]} \right|_0^{\frac{\pi }{2}}} \right\} \\
\end{gathered} \]
楼主想要达到的实际效果类似如下:

\(\small\begin{gathered}
  \sum\limits_{k = 1}^n {\overline {{P_{k - 1}}{P_k}} }  = \sum\limits_{k = 1}^n {\sqrt {{a^2}{{[\cos \frac{{k\pi }}{{2n}} - \cos \frac{{(k - 1)\pi }}{{2n}}]}^2} + {b^2}{{[\sin \frac{{k\pi }}{{2n}} - \sin \frac{{(k - 1)\pi }}{{2n}}]}^2}} }  \hfill \\
  \quad \quad \quad \quad \quad \;\; = \sum\limits_{k = 1}^n {\sqrt {{a^2}{{[ - 2\sin \frac{{(2k - 1)\pi }}{{4n}}\sin \frac{\pi }{{4n}}]}^2} + {b^2}{{[2\cos \frac{{(2k - 1)\pi }}{{4n}}\sin \frac{\pi }{{4n}}]}^2}} }  \hfill \\
  \quad \quad \quad \quad \quad \quad \quad \quad \quad  = \frac{\pi }{{2n}}\sum\limits_{k = 1}^n {\sqrt {{a^2}{{[\sin \frac{{(2k - 1)\pi }}{{4n}}\sin \frac{\pi }{{4n}}/\frac{\pi }{{4n}}]}^2} + {b^2}{{[\cos \frac{{(2k - 1)\pi }}{{4n}}\sin \frac{\pi }{{4n}}/\frac{\pi }{{4n}}]}^2}} }  \hfill \\ \end{gathered} \)
 楼主| 发表于 2021-4-4 18:49 | 显示全部楼层
论坛代码高手e老师可否 帮忙调试一下
回复 支持 反对

使用道具 举报

发表于 2021-4-4 23:18 | 显示全部楼层
本帖最后由 春风晚霞 于 2021-4-5 09:19 编辑

永远先生:您看可否如下调整?
\begin{align}
C &= \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {\overline {{P_{k - 1}}{P_k}} }  \\
&= \mathop {\lim }\limits_{n \to \infty } \frac{\pi }{{2n}}\sum\limits_{k = 1}^n {\sqrt {{a^2}{{\sin }^2}\frac{{(2k - 1)\pi }}{{4n}} + {b^2}{{\cos }^2}\frac{{(2k - 1)\pi }}{{4n}}} }  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}{{\sin }^2}\theta  + {b^2}{{\cos }^2}\theta } \;d\theta }  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}\left( {1 - {{\cos }^2}\theta } \right) + {b^2}{{\cos }^2}\theta } } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}{{\cos }^2}\theta  + {b^2}{{\cos }^2}\theta } } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}\tfrac{{1 + \cos 2\theta }}{2} + {b^2}\tfrac{{1 + \cos 2\theta }}{2}} } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - \tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
  &= \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2} + {b^2}}}{2} - \tfrac{{{a^2} - {b^2}}}{2}\cos 2\theta } } d\theta  \\
&= \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{2{a^2} + 2{b^2}}}{4} - \tfrac{{2{a^2} - 2{b^2}}}{4}\cos 2\theta } } d\theta  \\
&= \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2}}}{4} - \tfrac{{2\left( {a - b} \right)\left( {a + b} \right)}}{4}\cos 2\theta } } d\theta  \\
&= \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2} - 2\left( {a - b} \right)\left( {a + b} \right)\cos 2\theta } } d\theta  \\
&= \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2}\left[ {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } \right]} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } } d\theta  \\
  &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - 2\lambda \cos 2\theta } } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda \left( {{e^{2i\theta }} + {e^{ - 2i\theta }}} \right)} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2}{e^{2i\theta  - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + \lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \left( {\lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \lambda {e^{ - 2i\theta }}\left( {\lambda {e^{2i\theta }} - 1} \right)} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) - \lambda {e^{ - 2i\theta }}\left( {1 - \lambda {e^{2i\theta }}} \right)} } d\theta  \\
  &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right)\left( {1 - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
&= \frac{1}{2}\left( {a + b} \right){\int_0^{\frac{\pi }{2}} {\left( {1 - \lambda {e^{2i\theta }}} \right)} ^{\tfrac{1}{2}}}{\left( {1 - \lambda {e^{ - 2i\theta }}} \right)^{\tfrac{1}{2}}}d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;k}} } {\left( { - \lambda {e^{2i\theta }}} \right)^{\;k}}\sum\limits_{j = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;j}} {\left( { - \lambda {e^{ - 2i\theta }}} \right)^{\;j}}d\theta  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {(_{\;k}^{1/2}){{( - \lambda )}^k}{e^{2k{\kern 1pt} \theta {\kern 1pt} i}}} \sum\limits_{j = 0}^\infty  {(_{\;j}^{1/2}){{( - \lambda )}^j}{e^{ - 2j{\kern 1pt} \theta {\kern 1pt} i}}} d\theta }  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {\sum\limits_{j = 0}^\infty  {(_{\;k}^{1/2})(_{\;j}^{1/2}){{( - \lambda )}^{k + j}}{e^{2k\theta i}}{e^{ - 2j\theta i}}} } d\theta }  \\
&= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}\cos [2(2k - n)\theta ]} } d\theta }  \\
&= \frac{1}{2}\left( {a + b} \right)\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}} } \int_0^{\frac{\pi }{2}} {\cos [2(2k - n)\theta ]d\theta }  \\
\end{align}

代码附后:
  1. \begin{align}
  2. C &= \mathop {\lim }\limits_{n \to \infty } \sum\limits_{k = 1}^n {\overline {{P_{k - 1}}{P_k}} }  \\
  3. &= \mathop {\lim }\limits_{n \to \infty } \frac{\pi }{{2n}}\sum\limits_{k = 1}^n {\sqrt {{a^2}{{\sin }^2}\frac{{(2k - 1)\pi }}{{4n}} + {b^2}{{\cos }^2}\frac{{(2k - 1)\pi }}{{4n}}} }  \\
  4. &= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}{{\sin }^2}\theta  + {b^2}{{\cos }^2}\theta } \;d\theta }  \\
  5. &= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2}\left( {1 - {{\cos }^2}\theta } \right) + {b^2}{{\cos }^2}\theta } } d\theta  \\
  6. &= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}{{\cos }^2}\theta  + {b^2}{{\cos }^2}\theta } } d\theta  \\
  7. &= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - {a^2}\tfrac{{1 + \cos 2\theta }}{2} + {b^2}\tfrac{{1 + \cos 2\theta }}{2}} } d\theta  \\
  8. &= \int_0^{\frac{\pi }{2}} {\sqrt {{a^2} - \tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
  9.   &= \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2}}}{2} - \tfrac{{{a^2}}}{2}\cos 2\theta  + \tfrac{{{b^2}}}{2} + \tfrac{{{b^2}}}{2}\cos 2\theta } } d\theta  \\
  10. &= \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{a^2} + {b^2}}}{2} - \tfrac{{{a^2} - {b^2}}}{2}\cos 2\theta } } d\theta  \\
  11. &= \int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{2{a^2} + 2{b^2}}}{4} - \tfrac{{2{a^2} - 2{b^2}}}{4}\cos 2\theta } } d\theta  \\
  12. &= \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {\tfrac{{{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2}}}{4} - \tfrac{{2\left( {a - b} \right)\left( {a + b} \right)}}{4}\cos 2\theta } } d\theta  \\
  13. &= \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2} + {{\left( {a - b} \right)}^2} - 2\left( {a - b} \right)\left( {a + b} \right)\cos 2\theta } } d\theta  \\
  14. &= \frac{1}{2}\int_0^{\frac{\pi }{2}} {\sqrt {{{\left( {a + b} \right)}^2}\left[ {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } \right]} } d\theta  \\
  15. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {{\left( {\tfrac{{a - b}}{{a + b}}} \right)}^2} - 2\tfrac{{a - b}}{{a + b}}\cos 2\theta } } d\theta  \\
  16.   &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - 2\lambda \cos 2\theta } } d\theta  \\
  17. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda \left( {{e^{2i\theta }} + {e^{ - 2i\theta }}} \right)} } d\theta  \\
  18. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
  19. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + {\lambda ^2}{e^{2i\theta  - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
  20. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {1 + \lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{2i\theta }} - \lambda {e^{ - 2i\theta }}} } d\theta  \\
  21. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \left( {\lambda {e^{2i\theta }}\lambda {e^{ - 2i\theta }} - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
  22. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) + \lambda {e^{ - 2i\theta }}\left( {\lambda {e^{2i\theta }} - 1} \right)} } d\theta  \\
  23. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right) - \lambda {e^{ - 2i\theta }}\left( {1 - \lambda {e^{2i\theta }}} \right)} } d\theta  \\
  24.   &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sqrt {\left( {1 - \lambda {e^{2i\theta }}} \right)\left( {1 - \lambda {e^{ - 2i\theta }}} \right)} } d\theta  \\
  25. &= \frac{1}{2}\left( {a + b} \right){\int_0^{\frac{\pi }{2}} {\left( {1 - \lambda {e^{2i\theta }}} \right)} ^{\tfrac{1}{2}}}{\left( {1 - \lambda {e^{ - 2i\theta }}} \right)^{\tfrac{1}{2}}}d\theta  \\
  26. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;k}} } {\left( { - \lambda {e^{2i\theta }}} \right)^{\;k}}\sum\limits_{j = 0}^{ + \infty } {C_{\tfrac{1}{2}}^{\;j}} {\left( { - \lambda {e^{ - 2i\theta }}} \right)^{\;j}}d\theta  \\
  27. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {(_{\;k}^{1/2}){{( - \lambda )}^k}{e^{2k{\kern 1pt} \theta {\kern 1pt} i}}} \sum\limits_{j = 0}^\infty  {(_{\;j}^{1/2}){{( - \lambda )}^j}{e^{ - 2j{\kern 1pt} \theta {\kern 1pt} i}}} d\theta }  \\
  28. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{k = 0}^\infty  {\sum\limits_{j = 0}^\infty  {(_{\;k}^{1/2})(_{\;j}^{1/2}){{( - \lambda )}^{k + j}}{e^{2k\theta i}}{e^{ - 2j\theta i}}} } d\theta }  \\
  29. &= \frac{1}{2}\left( {a + b} \right)\int_0^{\frac{\pi }{2}} {\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}\cos [2(2k - n)\theta ]} } d\theta }  \\
  30. &= \frac{1}{2}\left( {a + b} \right)\sum\limits_{n = 0}^\infty  {\sum\limits_{k = 0}^n {(_{\;k}^{1/2})(_{\;n - k}^{1/2}){{( - \lambda )}^n}} } \int_0^{\frac{\pi }{2}} {\cos [2(2k - n)\theta ]d\theta }  \\
  31. \end{align}
复制代码
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-4-5 08:01 | 显示全部楼层
本帖最后由 永远 于 2021-4-5 20:25 编辑
春风晚霞 发表于 2021-4-4 23:18
永远先生:您看可否如下调整?
\begin{align}
C &= \mathop {\lim }\limits_{n \to \infty } \sum\limit ...



把编辑好的代码输入到,插入代码对话框,点击确定即可,这个插入代码对话框看图片上笑脸表情图旁边“<>”点击一下即可打开

回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-4-5 12:22 | 显示全部楼层
本帖最后由 永远 于 2021-4-5 12:23 编辑
春风晚霞 发表于 2021-4-4 23:18
永远先生:您看可否如下调整?
\begin{align}
C &= \mathop {\lim }\limits_{n \to \infty } \sum\limit ...


惊呆了!前辈说说看您是怎样把全部等号对的这么齐的,怎么做到的???????

这么整齐,有什么诀窍吗,还是用啥软件里做的????
回复 支持 反对

使用道具 举报

发表于 2021-4-5 15:04 | 显示全部楼层
本帖最后由 春风晚霞 于 2021-4-5 15:08 编辑
永远 发表于 2021-4-5 12:22
惊呆了!前辈说说看您是怎样把全部等号对的这么齐的,怎么做到的???????

这么整齐,有什么诀 ...


其实也没有什么诀窍,主是论坛所附Latex适合align环境。关于诸多等号对齐(参见《教程》六等号对齐,教程六介绍的split环境我试了一下,设达到预期效果(也许是我不够专心吧)才改用的align环境,该环境的语法格式附后。不知先生手边有没有在长双向箭头上下添加注释的程序,如有能否支援我一个(我也就不再去思考或找寻它了)。这个东西在用元素考察法证两个集合相等时,可少写一半的代码。无论您有还是没有都提前謝谢了。
align语法附后
  1. \begin{align}……\end{align}语法格式为:
  2. \begin{align}
  3. C&=第一行右端\\
  4. &=第二行右端\\
  5. &=第三行右端\\
  6. ……
  7. &=第n行右端\\
  8. ………
  9. \end{align}

  10. (注:其中C为第一行左端)。
复制代码
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-4-5 17:51 | 显示全部楼层
本帖最后由 永远 于 2021-4-5 17:58 编辑
春风晚霞 发表于 2021-4-5 15:04
其实也没有什么诀窍,主是论坛所附Latex适合align环境。关于诸多等号对齐(参见《教程》六等号对齐,教 ...


现在在工厂车间里干活,回复可能有点慢,巧了貌似mathype软件里有, 晚上下班回去看看,如果合适发个链接共享一下,这个简单
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-4-5 21:09 | 显示全部楼层
本帖最后由 永远 于 2021-4-6 20:22 编辑
春风晚霞 发表于 2021-4-5 15:04
其实也没有什么诀窍,主是论坛所附Latex适合align环境。关于诸多等号对齐(参见《教程》六等号对齐,教 ...


所谓的长双向箭头,具体指哪一种,有好多种!!!!!!!!



本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

 楼主| 发表于 2021-4-5 21:28 | 显示全部楼层
对于不太熟悉LaTeX文本的坛友,在数学公式编辑器MathType编辑好公式,复制粘贴到论坛的MathType预览框,加括号反斜杠等,稍微编辑一下就好了。或者在Mathematica其他数学软件上,复制为LaTeX文本,再到预览框中编辑,省去记那些代码的麻烦,基本语法还是懂一些,
回复 支持 反对

使用道具 举报

发表于 2021-4-5 23:04 | 显示全部楼层
永远 发表于 2021-4-5 21:28
对于不太熟悉LaTeX文本的坛友,在数学公式编辑器MathType编辑好公式,复制粘贴到论坛的MathType预览框,加 ...

谢谢。我已找到能任意伸缩且能在其上下打字的Latex箭头模块,虽然如此,还是谢谢!
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-15 07:28 , Processed in 0.099094 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表