|
本帖最后由 王守恩 于 2021-4-15 10:09 编辑
加深影响。
\(a(n)=\sqrt[1]{(\frac{1}{2})^{0}},\sqrt[1]{(\frac{1}{2})^{1}},\sqrt[2]{(\frac{1}{2})^{1}},\sqrt[4]{(\frac{1}{2})^{3}},\sqrt[8]{(\frac{1}{2})^{5}},\sqrt[16]{(\frac{1}{2})^{11}},\sqrt[32]{(\frac{1}{2})^{21}},\sqrt[64]{(\frac{1}{2})^{43}},\sqrt[128]{(\frac{1}{2})^{85}},\sqrt[256]{(\frac{1}{2})^{171}},\sqrt[512]{(\frac{1}{2})^{341}},\)
LinearRecurrence[{1, 2}, {0, 1}, 28]
{0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381,
174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243,}
\(\displaystyle\lim_{n\to\infty}\sqrt[3*2^{n}]{\bigg(\frac{1}{2}\bigg)^{2^{n+1}+\cos(n\pi)}}=\sqrt[3]{\bigg(\frac{1}{2}\bigg)^{2}}=0.62996\) |
|