|

楼主 |
发表于 2021-5-18 11:12
|
显示全部楼层
本帖最后由 elim 于 2021-5-19 20:45 编辑
题:试证\(\,(0< a_{k+1}< a_k < \sum a_n < \infty\;(\forall k))\implies( na_n\to 0).\)
证:据Cauchy准则,对\(\,\varepsilon\small>0,\,\)有\(\,m_{\varepsilon}\small\in\mathbb{N}\,\)使\(\,a_{\lfloor\frac{n}{2}\rfloor}{\small+\cdots+}a_n< \varepsilon\,\small(n>2m_{\varepsilon})\)
\(\quad\)因\(\{a_n\}\)递减,\(\;\frac{1}{2}na_n< \varepsilon\;(\forall n>2m_{\varepsilon}).\;\;\therefore\;\;\displaystyle{\lim_{n\to\infty}na_n =\small 0.}\small\;\;\square\) |
|