数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 7736|回复: 18

1=0.9循环

[复制链接]
发表于 2021-8-17 11:29 | 显示全部楼层 |阅读模式
三分之1等于0.3循环,而三分之一乘三等于1,0.3循环×3等于0.9循环,所以0.9循环等于1
发表于 2021-8-17 13:46 | 显示全部楼层
六分之一乘六等于1,而(0.1+0.06循环)×6等于0.6+0.399999.....9999996,所以0.6+0.399999.....9999996等于1
所以0.999999999999999.....................6=0.999999999999999999999..........9
所以0.00000000............6=0.00000000....9
所以6=9
回复 支持 反对

使用道具 举报

发表于 2021-8-23 22:29 | 显示全部楼层
2345上校 发表于 2021-8-16 22:46
六分之一乘六等于1,而(0.1+0.06循环)×6等于0.6+0.399999.....9999996,所以0.6+0.399999.....9999996等 ...

(0.1+0.06循环)×6 不等于 0.6+0.399999.....9999996
无尽小数没有最后一位数
回复 支持 反对

使用道具 举报

发表于 2021-8-24 09:59 | 显示全部楼层
春风晚霞:无穷级数和是其前n项和的数列的趋向性极限才是S,它不等于无穷级数的无穷次相加,现行教科书中的等式∑a(n)=S 不成立。在数学中戈培尔效应不成立。所以,你重负多次还是不成立。成立的只能是其前n项和的数列的趋向性极限才是S。具体的讲,1被3除除不尽的事实需要被尊重。无尽小数是永远算不到底、写不到底的康托尔基本数列的简写,0.333……不是定数,它是1被3除得到的无穷数列0.3,0.33,0.333,的数列的简写,它的每一项都小于1/3,,它的趋向性极限才是1/3;现行教科书中的等式1/3=0.333... 不成立。】
回复 支持 反对

使用道具 举报

发表于 2021-8-24 12:39 | 显示全部楼层
吃狗屎的 jzkyllcjl 的“无穷次相加”是无意义的。应该是无穷项有序和因而是有限和序列的上确界\(s\)。
根据单调有界定理,这个上确界就是部分和序列的极限。所以 \(\sum_{n=1}^\infty a_n = s\) 成立。

jzkyllcjl 吃上了狗屎,楼上讲论矛盾百出。不可救药。
回复 支持 反对

使用道具 举报

发表于 2021-8-25 09:42 | 显示全部楼层
第一,数学理论是需要进步的,欧几里得的《几何原本》用了两千多年,现在不用了。现行的《几何基础》与实数理论、才使用一百多年。任何理论都需要在实践中接受检验。你说哩可以,但不能以现在的发行量多少为论据,不能以是不是正教授或专家作依据。 所以,我再次说无穷级数和是其前n项和的数列的趋向性极限才是S,它不等于无穷级数的无穷次相加,现行教科书中的等式∑a(n)=S 左端是无法进行的无穷次加法运算,右端是其前n项和的数列的趋向性极限,两端的意义不同,现行教科书混淆了两端的不同概念,所以等式∑a(n)=S 不成立。
这个等式 造成了许多错误的数学等式。例如; 1被3除,本来是永远除不尽的操作,这个除法运算得到的无穷级数的前n项和的无穷数列Sn=0.33……3(n个3)与1/3的差为:3×10^n 分之一,这个差趋向于0,但永远不等于0,达不到0。这说明:这个无穷数列Sn 具有性质:①永远小于1/3;②可以无限接近于1/3,但达不到1/3,所以,现行教科书中的等式1/3=0.333……是错误的。再如,等式π=3.1415926…… 造成了徐利治 介绍的布劳威尔提出的三分律反例。这个错误的级数和表达式,造成了无尽小数等于实数的错误定义与连续统假设大难题。 差之毫厘谬之千里。 无穷级数的错误等式 虽然是从外国抄来的,是国内外许多教科书都用的等式,但必须改革。
第二,无穷数列极限的定义,虽然需要使用ε-N方式 说明,但无穷数列具有写不到底的性质,其极限值具有数列不可达到的性质是必须尊重的事实,例如无穷数列{1/n} 的极限是0,但这个数列永远达不到0. 因此,所有无尽小数都是康托尔基本数列的简写,它们都是变数而不是定数,现行教科书中的 等式π=3.14159……,√2=1.4142……;1/3=0.333…… 都不成立。我从来没有说过:π≠π,√2≠√2,1/3≠1/3. ,这几个不等式是你对我的污蔑。
回复 支持 反对

使用道具 举报

发表于 2021-8-25 10:37 | 显示全部楼层
一个序列趋向极限但不等于这个极限很正常。为什么要求达到? 1/3 - 0.333... 不等于0等于多少?
为什么 除法的结果是数列而不是商? 谁告诉你长除法是求商的算法? 谁让你拿序列冒充商? 你 jzkyllcjl 吃上了狗屎,就不会算账,\(\dfrac{1}{3}=(1-10^{-n})/3+\dfrac{1}{3\cdot 10^n}=0.\underset{n \text{个} 3}{\underbrace{33\ldots 3}}+\dfrac{1}{3\times 10^n}\)
令\(\,n\to\infty\) 便得 \(\dfrac{1}{3}=0.333\ldots\)

学渣 jzkyllcjl 是主张全是错的。
回复 支持 反对

使用道具 举报

发表于 2021-8-25 22:18 | 显示全部楼层
本帖最后由 春风晚霞 于 2021-8-26 07:46 编辑
jzkyllcjl 发表于 2021-8-25 09:42
第一,数学理论是需要进步的,欧几里得的《几何原本》用了两千多年,现在不用了。现行的《几何基础》与实数 ...


jzkyllcjl:
       第一、你认为【数学理论是需要进步的,欧几里得的《几何原本》用了两千多年,现在不用了。现行的《几何基础》与实数理论、才使用一百多年】。请先生明示现行教科书中的《平面几何》是欧几里得几何体系,还是非欧几里得几何体系?现行的《几何基础》属于欧几里得几何体系,还是非欧几里得几何体系?我多次要求先生回答,从马克思的无穷级数\(1\over 3\)=\(3\over 10\)+\(3\over 100\)+\(3\over 1000\)+\(3\over 10000\)+…,经殴几里得等量代换公理得\(1\over 3\)=0.3333…究竟哪一步错了,为什么错了?你总是避而不答。现在又拿〈欧几里得的《几何原本》用了两千多年,现在不用了〉来搪塞。不妨告诉你,殴几里得等量公理在现行教科书中仍在应用,并且它还是解方程、解不等式的主要工具。
       是的〈任何理论都需要在实践中接受检验。〉不过这里的“实践”应是数学社会的公众实践。决非是某一个人根据“狗要吃屎”的事实,臆想出的“要吃狗屎”的实践。
       对于【你说哩可以,但不能以现在的发行量多少为论据,不能以是不是正教授或专家作依据 】,对不起,我的看法恰恰与你相反。作为己正式出版的数学刊物,再版次数和发行量多寡恰是该刊物得到数学社会认可程度的直接反映。作为高校的从业教师,技术职称则是对他从业过程中取得的业绩的综合评定。所以技术职称也在一定程度上,反咉专业论文含金量多少。
       jzkyllcjl,现行教科书无穷级数和的定义是:\(\displaystyle\sum_{k=1}^∞ a_k\)=S,该式左端表示无穷级数所有项之和,右端S表示级数前n项和(或称部分和)的极限(即S=\(\displaystyle\lim_{n \to \infty}S_n\)=\(\displaystyle\lim_{n \to \infty}\)\(\displaystyle\sum_{k=1}^n a_k\))。该式左右两端都表示级数所有项之和,根本就不存在所谓意义不同之说。
       jzkyllcjl像反对康托尔实数定义一样,先把无穷级数前n项和的极限篡改为〈无穷级数前n项和的数列的趋向性极限〉,然后再大加攻击说【无穷级数和是其前n项和的数列的趋向性极限才是S,它不等于无穷级数的无穷次相加,现行教科书中的等式∑a(n)=S 左端是无法进行的无穷次加法运算,右端是其前n项和的数列的趋向性极限,两端的意义不同,现行教科书混淆了两端的不同概念,所以等式∑a(n)=S 不成立】。很明显jzkyllcjl的这番言论,是在为他的“无尽就是无有穷尽,无有终了之意。因无尽小数写不到底,算不到底。所以,无尽小数不是定数,也不是实数”鸣冤叫屈。而【这个等式造成了许多错误的数学等式。例如; 1被3除,本来是永远除不尽的操作,这个除法运算得到的无穷级数的前n项和的无穷数列Sn=0.33……3(n个3)与1/3的差为:3×10^n 分之一,这个差趋向于0,但永远不等于0,达不到0。这说明:这个无穷数列Sn 具有性质:①永远小于1/3;②可以无限接近于1/3,但达不到1/3。所以,现行教科书中的等式1/3=0.333……是错误的。再如,等式π=3.1415926…… 造成了徐利治介绍的布劳威尔提出的三分律反例。这个错误的级数和表达式,造成了无尽小数等于实数的错误定义与连续统假设大难题。 差之毫厘谬之千里。 无穷级数的错误等式 虽然是从外国抄来的,是国内外许多教科书都用的等式,但必须改革】则是对教科书无穷级数理论的栽脏诬陷。虽说无穷级数理论是证明无尽小数是定数,也是实数的一般方法。数学发展史中证明1/3=0.333……、π=3.1415926…… 又岂止无穷级数理论一法?即使jzkyllcjl敢冒反对恩格斯关于无穷级数论述之大不韪,抹黑无穷级数理论,但你难以否定教科书中等式1/3=0.333…、π=3.1415926…的正确性。〈等式π=3.1415926…… 造成了徐利治 介绍的布劳威尔提出的三分律反例。这个错误的级数和表达式,造成了无尽小数等于实数的错误定义与连续统假设大难题〉 之说更是滑天下之大稽。徐利治先生在《自然数列二重性与双相无限性及其对数学发展的影响》一文中明确说了,实无穷理论不存在Brouwer三分律反例(只须使用两次排中律,即可证明Brouwer数Q>0;Q=0;Q<0 这三种情况有且只有一种情说成立。即现行教科书中的等式π=3.1415926……满足实数三分律),jzkyllcjl根据徐利治先生在该文最后所说的“至于Q>0; Q=0;Q<0三种情况中究竟哪种情况存立,还待进一步研究”就断定“等式π=3.1415926…… 造成了徐利治介绍的布劳威尔提出的三分律反例”,很明显这既是对现行教科书的栽脏,也是对徐利治先生的诬陷。〈这个错误的级数和表达式,造成了无尽小数等于实数的错误定义与连续统假设大难题〉一说更是令人啼笑皆非。现行教科书中把“有理数和无理数”统称实数。由于jzkyllcjl的《全能近似分析》中,有理数、无理数均无定义。所以,jxkyllcjl认为前述〈级数和表达式,造成了无尽小数等于实数的错误〉。为此,我再次资询,jzkyllcjl先生,你常说“无尽小数不是定数,也不是实数”,那么无尽小数还是不是数?如果是,那么它又该是什么数?至于这个无穷级数等式造成了〈连续统假设大难题〉那就更滑稽了。jzkyllcjl先生,你知道什么是〈连续统假设大难题〉吗?你能否向众网友介绍一下无穷级数的这个等式是如何造成〈连续统假大难题〉的?
       第二、jzkyllcjl,对于你的【无穷数列极限的定义,虽然需要使用ε-N方式 说明,但无穷数列具有写不到底的性质,其极限值具有数列不可达到的性质是必须尊重的事实】一语,春风晚霞分两个方方面予以说明。① 、由于利用极限定义实数(确切的讲应是无理数),需要定位到具体的每个客观存在并且取值唯一的数。所以Cauchy的“无限趋近”的潜无限描述方式就显得不够用了,这个不够用也客观上造成了Cauchy“不能证明由他自己创立的‘数列收敛准则’的充分性”【参见周民强编著《实变函数论》P71页】,所以Weierstrass在Cauchy极限概念的基础上给出了极限的“ε-\(\delta\)、ε-N”语言定义。现在以“ε-N”语言定义数列{\(a_n\)}的极限是常数A:定义:对于数列{\(a_n\)}和常数A,如果对任意预先给定的、无论怎样小的正数ε,存在自然数N,当n>N时恒有|\(a_n\)-A|<ε,则称数列{\(a_n\)}的极限是A,记为\(\displaystyle\lim_{n \to \infty}a_n\)=A。如果当n\(\to\)∞时,\(a_n\)只是“趋向但不等于”A,那么这时必有|\(a_n\)-A|=\(\alpha\)>0,令ε=\(\alpha\over 2\) ,则存在自然数N,当n>N时,恒有|\(a_n\)-A|=\(\alpha\)>ε,所以数列{\(a_n\)}的圾限不是A。所以若\(\displaystyle\lim_{n \to \infty}a_n\)=A。那么当n\(\to\)∞时,\(a_n\)=A(即极限可达)。②、〈所有无尽小数都是康托尔基本数列的简写,它们都是变数而不是定数〉。jzkyllcjl虽然骚整了一个《全能近似分析数学理论基础及其应用》,但没有一样是他独立的创新见解。如他在篡改康托尔实数定义的基础上得到的康托尔基本数列(有时他又称这样的数列为“全能近似数列”或“变量性数列”,以后称其为“变量性数列”以避免与教科书中康托尔实数基本序列混淆),由于jzkyllcjl颠倒近似对准确的依赖关系。他的变量性序列只能以无限循环小数为例。对于无限不循环小数如\(\sqrt 2\)、π的十进制展开,他只有利用计算器先求出它们足够多位的近似值,然后再根据其不同的近似程度(即保留小数位数的多少)作出它们的变量性数列:
如π的“变量性数列”为:{3.1,3.14,3.141,3.1415,3.14159,3.141592,3.1415926,…};\(\sqrt 2\)的“变量性数列”为{1.4,1.41,1.414,1.4142,1.41421,1.414213,1.4142135…}不难看出jzkyllcjl的“变量性数列”只是决定该数列的那个确定数的近似程度在变而,那个确定数本身并没有变。所以这两个“变量性数列”的圾限分别是π和\(\sqrt 2\)。
       jzkyllcjl认为【现行教科书中的 等式π=3.14159……,√2=1.4142……;1/3=0.333…… 都不成立。我从来没有说过:π≠π,√2≠√2,1/3≠1/3. ,这几个不等式是你对我的污蔑。】
         ①、其实,现行教科书中的等式π=3.14159……,√2=1.4142……;1/3=0.333…… 都是成立的。因jzkyllcjl是数学上的另类,他只知道“狗要吃屎”的事实,根本认识不了数学上大量的“人不吃屎”的范例。jzkyllcjl叫器的“改革”,其实质就是根据他“要吃的屎”的实践,摧毁几干年人类在公众实践中创立的一切数学体系(包括殴几里得数学体系),用他漏洞百出,前后矛盾的《全能近似分析数学理论基础及其应用》取而代之。当然,志大才疏,蚍蜉撼树,事难成焉。
       ②、jzkyllcjl认为〔我从来没有说过:π≠π,√2≠√2,1/3≠1/3,这几个不等式是你对我的污蔑。〕你虽然没有明目张胆地说“π≠π,√2≠√2,1/3≠1/3”但根据你的“要吃狗屎”的理论论推出的又岂只这几个不等式。现我们根据恩格斯关于无穷级数的论述,以及jzkyllcjl关于[无穷级数和是其前n项和的趋向性极限值]的观点,我们对\(\sqrt 2\)、\(\pi\)和马克思的无穷级数分别计算如下:
       ①:\(\sqrt 2\)=1+\(1\over 2\)-\(1\over 8\)+\(1\over 16\)+.......-\({(-1)}^n\)\({(2n-3)!!}\over 2^nn!\)+.....=\(\displaystyle\lim_{n \to \infty}\)[1+\(1\over 2\)-\(1\over 8\)+\(1\over 16\)+.......-\({(-1)}^n\)\({(2n-3)!!}\over 2^nn!\)]\(\lower{-7pt}{\underline{\underline {趋向但不等于}}\kern{-3pt}{\lower{7.5pt}{>}}}\)\(\sqrt 2\);即是\(\sqrt 2\)\(\ne\)\(\sqrt 2\)。
    ② :\(\pi\)=4[1-\(1\over 3\)+\(1\over 5\)+…+\(({-1})^n\)\(1\over {2n+1}\)+……]=\(\displaystyle\lim_{n \to \infty}\)4[1-\(1\over 3\)+\(1\over 5\)+…+\(({-1})^n\)\(1\over {2n+1}\)]\(\lower{-7pt}{\underline{\underline {趋向但不等于}}\kern{-3pt}{\lower{7.5pt}{>}}}\)\(\pi\);亦即是\(\pi\)\(\ne\)\(\pi\)。
       ③:\(1\over 3\)=\(3\over 10\)+\(3\over 100\)+\(3\over 1000\)+\(3\over 10000\)+…=\(\displaystyle\lim_{n \to \infty}\)[\(3\over 10\)+\(3\over 100\)+\(3\over 1000\)+\(3\over 10000\)+…+\(3\over 10^n\)]\(\lower{-7pt}{\underline{\underline {趋向但不等于}}\kern{-3pt}{\lower{7.5pt}{>}}}\)\(1\over 3\); 也就是\(1\over 3\)\(\ne\)\(1\over 3\)。
       jzkyllcjk,这几个不等式可不是我对你的污蔑,而是根据你“要吃狗屎”理论算出的必然结果嘛!
回复 支持 反对

使用道具 举报

发表于 2021-8-26 10:56 | 显示全部楼层

第一,我说的【无穷级数和是其前n项和的数列的趋向性极限才是S,它不等于无穷级数的无穷次相加,现行教科书中的等式∑a(n)=S 左端是无法进行的无穷次加法运算,右端是其前n项和的数列的趋向性极限,两端的意义不同,现行教科书混淆了两端的不同概念,所以等式∑a(n)=S 不成立】。是事实。
我说的“无尽就是无有穷尽,无有终了之意。因无尽小数写不到底,算不到底。所以,无尽小数不是定数,也不是实数”也是事实。
我说的【这个等式造成了许多错误的数学等式。例如; 1被3除,本来是永远除不尽的操作,这个除法运算得到的无穷级数的前n项和的无穷数列Sn=0.33……3(n个3)与1/3的差为:3×10^n 分之一,这个差趋向于0,但永远不等于0,达不到0。这说明:这个无穷数列Sn 具有性质:①永远小于1/3;②可以无限接近于1/3,但达不到1/3。所以,现行教科书中的等式1/3=0.333……是错误的。再如,等式π=3.1415926…… 造成了徐利治介绍的布劳威尔提出的三分律反例。这个错误的级数和表达式,造成了无尽小数等于实数的错误定义与连续统假设大难题。 差之毫厘谬之千里。 无穷级数的错误等式 也是事实。
根据上是事实,对国内外许多教科书都必须改革。我是根据事实说话,而不是对教科书无穷级数理论的栽脏诬陷。现行教科书虽然是经过专家审定的,但使用无穷级数理论证明无尽小数是定数,证明1/3=0.333……、π=3.1415926…… 的那些方法都是错误的。我没有反对恩格斯关于无穷级数论述,我尊重恩格斯“数学的无限是从现实中借来的,……,而只能从现实中来说明,……。而这样一来,问题就说明了”,
我说的〈等式π=3.1415926…… 造成了徐利治 介绍的布劳威尔提出的三分律反例。这个错误的级数和表达式,造成了无尽小数等于实数的错误定义与连续统假设大难题〉也是事实。 春风晚霞引用的【徐利治先生在《自然数列二重性与双相无限性及其对数学发展的影响》一文中明确说了,实无穷理论不存在Brouwer三分律反例(只须使用两次排中律,即可证明Brouwer数Q>0;Q=0;Q<0 这三种情况有且只有一种情说成立。】是对徐利治论文的断章取义,事实上徐利治在这篇论文的最后部分指出“看来,这还是一个不易解决的难题”,“希望对布劳维尔(Brouwer)反例感兴趣的读者继续研究下去”。根据徐利治的这个希望。我的研究就是很具茅以升在《十万个为什么》190-195页最后说的“永远算不完的,这是个无尽的数啊!”的事实,指出“布劳威尔反例中的三个命题都是不可判断猫的命题,三分律不能用,这就消除了这个反例”。无尽小数算不到底、写不到底是事实,根据事实解决问题、说明问题的做法 不是春风晚霞说的 {是对现行教科书的栽脏}},而是对先行教科书的应有改革。
第二,春风晚霞说指责笔者的《全能近似分析》中,有理数、无理数均无定义。但是我多次说过我的如下的定义。定义3(理想实数的非形式化定义): 现实数量的大小(包括现实线段长度)具有可变性、测不准性;但在相对性与暂时性的意义下,可以认为:每一个现实数量都有确定的大小。因此,可以提出:现实数量大小(例如线段长度)的没有误差的绝对准表达符号叫做理想实数(简称为实数)。其中不能用有理数绝对准表达的理想实数都叫无理数(例如:π与 根号2). 我与现行教科书的区别仅仅是指出“无尽小数是实数康托尔基本数列的简写,它们都是变数,而不是定数,它们的极限才是实数。”至于连续统假设大难题,在张锦文《 集合论与连续统假设浅说》[M]. 上海:上海教育出版社,1980出版,有详细介绍,其中最后-87指出是个大难题。
回复 支持 反对

使用道具 举报

发表于 2021-8-26 12:06 | 显示全部楼层
什么是无穷次相加, 吃狗屎的 jzkyllcjl?
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-5-15 19:45 , Processed in 0.106881 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表