|
- \!\(\*OverscriptBox["b", "_"]\) = b = 0;
- \!\(\*OverscriptBox["c", "_"]\) = c = 1; d = 1 + I;
- \!\(\*OverscriptBox["d", "_"]\) = 1 - I; a = I;
- \!\(\*OverscriptBox["a", "_"]\) = -I;
- \!\(\*OverscriptBox["f", "_"]\) = -f;
- m = (d + f)/2;
- \!\(\*OverscriptBox["m", "_"]\) = (
- \!\(\*OverscriptBox["d", "_"]\) +
- \!\(\*OverscriptBox["f", "_"]\))/2;(*M是DF中点*)
- k[a_, b_] := (a - b)/(
- \!\(\*OverscriptBox["a", "_"]\) -
- \!\(\*OverscriptBox["b", "_"]\));
- \!\(\*OverscriptBox["k", "_"]\)[a_, b_] := 1/k[a, b];(*复斜率定义*)
- \!\(\*OverscriptBox["Jd", "_"]\)[k1_, a1_, k2_, a2_] := -((a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\) - (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(
- k1 - k2));(*复斜率等于k1,过点A1与复斜率等于k2,过点A2的直线交点*)
- Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1
- \!\(\*OverscriptBox["a1", "_"]\)) - k1 (a2 - k2
- \!\(\*OverscriptBox["a2", "_"]\)))/(k1 - k2));
- e = Jd[-k[d, f], m, 1, b];
- \!\(\*OverscriptBox["e", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[-k[d, f], m, 1, b];
- kPF = -k[f, e] k[d, e];(*角相等条件*)
- p = Jd[kPF, f, 1, b];
- \!\(\*OverscriptBox["p", "_"]\) =
- \!\(\*OverscriptBox["Jd", "_"]\)[kPF, f, 1, b];
- Simplify[{e,
- \!\(\*OverscriptBox["e", "_"]\)}]
- Simplify[{1/k[p, f], -1/k[p, d], (-1/k[p, d])^2}](*验证结论*)
复制代码 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|