|
本帖最后由 愚工688 于 2022-5-22 07:37 编辑
我用黄博士赠予的高速筛选素对软件的计算结果:
G(2022051800) = 4284983
G(2022051802) = 3222524
G(2022051804) = 6422068
G(2022051806) = 3244863
G(2022051808) = 4306029
G(2022051810) = 8737072
G(2022051812) = 3566684
G(2022051814) = 3223821
G(2022051816) = 6443811
G(2022051818) = 3324775
G(2022051820) = 4597656
G(2022051822) = 7734805
G(2022051824) = 3520416
G(2022051826) = 3268501
G(2022051828) = 6437456
G(2022051830) = 4298941
G(2022051832) = 3244603
G(2022051834) = 7158517
G(2022051836) = 3883581
G(2022051838) = 3230552
count = 20, algorithm = 2, working threads = 2, time use 0.560 sec
这个软件的运行结果与我自编的低速筛选素对的数据是完全一致的。是经过考验的。
例:
9699690:3:2
G(9699690) = 124180
G(9699692) = 28588
G(9699694) = 28853
count = 3, algorithm = 2, working threads = 2, time use 0.004 sec
而我自编的Basic低速软件就一个偶数的运行结果:
All keys of dividing 9699690 into two prime numbers:
4849723 + 4849967 4849639 + 4850051 4849631 + 4850059…… 53 + 9699637 47 + 9699643 43 + 9699647 41 + 9699649 37 + 9699653 23 + 9699667
M= 9699690 S(m)= 124180
CPU为:AMD Athlon(tm) xp2000+、操作系统:Win-xp;运行时间:26分 ; 2005/11/07
显然我的自编的Basic软件不适用于千万以上的偶数素对的筛选,太费时了。
|
|