|
题:试证若正整数\(k\)不含因子\(2,\;3.\;5\), 则对某\(n,\;k\)是\(\underset{n个1}{\underbrace{11\ldots 1}}\)的因子
证: 由题没, \(k^{-1}=0.m_0\ldots m_j\overline{a_1\ldots a_n}\) 是循环小数.
所以有 \(\small\dfrac{1}{k}=\dfrac{(10^n-1)(m_1\ldots m_j)+10^j(a_1\ldots a_n)}{10^j(10^n-1)}\)
故 \( k{\large\mid} \large\frac{10^n-1}{9}\). |
|