|

楼主 |
发表于 2022-10-28 15:17
|
显示全部楼层
如果OL是OK上一自由模(秩一定是l),那么在OL中就有l个元素r1,r2,…,rl构成OL的一组基,即(公式9)这样的元素组r1,r2,…,rl称为OL对于OK的一组整基。当OK是主理想环时,由主理想环上有限生成模的结构定理可知,OL对于OK一定有整基。特别地,代数整数环OK对于整数环Z一定有整基。
设P是OK中一个素理想。POL是OL中一个理想,它在OL中有素理想分解(公式10)
因为代数整数环是戴德金环,素理想都是极大理想,即代数整数环对于素理想的商环是域。对于(3),可以证明Qi∩OK =P,i=1,2,…,g。因而OK/P可以看作OL/Qi的子域。令(公式11)它称为Qi对于P的剩余次数,ei称为Qi对于P 的分歧指数。于是有(公式12)
如果在(3)中有某个ei>1,即POL被素理想Qi的平方整除,就说P 在L 中分歧,而Qi就称为在K上分歧。否则就称为非分歧。如果OK中所有的素理想在L中都是非分歧的,L就称为K 的一个非分歧扩张。
判别式与差积是刻画分歧的两个重要概念。令Tr表示有限扩张L到K 的迹。对于L中任意l个元素v1,v2,…,vl,可知det│Tr(vi,vj)│=0的充分必要条件是v1,v2,…,vl,在K上线性相关。在OL中取l个在K上线性无关的元素v1,v2,…,vl,作(公式13)对于OL中所有可能的线性无关的元素组 v1,v2,…,vl,det│Tr(vi,vj)│在OK中生成一个理想Δ(L/K),它称为L对于K的判别式。可以证明,OK中素理想P在L中分歧,当且仅当P|Δ(L/K)。由此可知,K中分歧的素理想只有有限多个,且L为非分歧扩张的充分必要条件是:Δ(L/K)=OK。利用判别式可以证明,有理数域上没有次数大于1的非分歧扩张。
在L中定义C={v∈L│Tr(vOL)嶅OK},显然C 是L的一个分式理想,且C叾OL。令 δ(L/K)=C-1,它是OL中一个理想,称为L对于K 的差积。可以证明,OL中素理想Q在K上分歧,当且仅当Q|δ(K/L)。差积与判别式有密切联系。
研究代数数域的算术性质与代数性质之间的联系,是代数数论的一个重要的方面。
设L/K是一伽罗瓦扩张,g=g(L/K)是伽罗瓦群。可以证明,在分解式(3)中,素理想Q1,Q2,…,Qg在伽罗瓦群 g下是可迁的,因而有即对于OK中素理想P有代数数论代数数论且Q1,Q2,…,Qg有相同的剩余次数ƒ。公式(4) 就成为l=eƒg。 令 D1为 Q1在 g 中的稳定子群,即代数数论代数数论,显然【g 1】=g,|D1|=eƒ。令 岧=OL/Q1,噖 =OK/P,于是D1中每个元素诱导出岧/噖 的一个自同构。可以证明,代数数论是一满同态。令K1为这个同态的核,显然,【D1:K1】=ƒ,│K1│=e,D1称为Q1的分解群,K1称为Q1的惰性群。对Qi相应地有子群Di与Ki, 在g中它们分别与D1与K1共轭。当 P非分歧时,代数数论代数数论(因噖、岧是有限域)。由伽罗瓦基本定理,相应地有一串域代数数论代数数论是L的一个最大的域,P 在其中不分歧。当P 分歧时,群K1还可进一步细分,即定义所谓高阶分歧群。这是由D.希尔伯特建立的一套重要的理论,称为希尔伯特分歧理论。
对于代数数域上的阿贝尔扩张,有很深刻的结果,即所谓类域论。 |
|