|

楼主 |
发表于 2022-10-31 22:22
|
显示全部楼层
如梦幻泡影
多重宇宙几多重?只要宇宙可以无限膨胀,就像在永恒暴胀理论中那样,答案必然是宇宙最终会无穷多也[33]。在数学的哲学中,潜在的无穷和实际的无穷之间有一个典型的区别:当借助后继函数 S(n) = n + 1 来定义自然数 1,2,3,…,时,它们永远保持为潜在的[无穷]。它们对任何给定的 n 都是有限的,但对于所有自然数的集合则不然,后者的集合的势是阿列夫 0 。继康托(Georg Cantor)之后,集合论学家认为它的确是实际意义上的无穷。它没有任何潜在的意义。物理学家长期以来一直对实际意义上的无限持怀疑态度,且有充分的理由。希尔伯特旅馆(Hilbert Hotel)有无穷多的房间,让我们假定所有的房间都住满了。然而,如果通过函数 f: n→n + 1 来移动其他每个房间的房客,总可以多出一个新的房间。这并非逻辑悖论,因为无穷不是一个具体数字。但物理学家们始终无法接受希尔伯特旅馆可以表达在任何一种物理实体上。
这是大多数物理学家不希望看到的情况。
如果多重宇宙并不合乎科学,那么哲学家们总是可以通过扩大科学的疆域来拯救它。这种论点认为,理论不需要经验证据来证实。达维德(Richard Dawid)在一篇名为《基础物理学中非经验证明的意义》(The Significance of Non-Empirical Confirmation in Fundamental Physics)的论文中提出了同样的观点。他写道:“在缺乏经验证实的情况下,科学家可以根据广泛的论据来判断一个理论的可行性。”[35]
达维德说,一顺百顺。满足条件的特定集合的理论在过去一直有效,这就增加了满足相同条件的新理论在未来继续奏效的可能性。这一论证体现了人们的希望对实验的重大胜利。1974 年,乔基(Howard Georgi)和格拉肖(Sheldon Lee Glashow)提出了一个精妙的大统一理论(grand unified theory),这个理论被冀望将强力和电弱力统一起来。它预言,由于自发对称性破缺(spontaneous symmetry breaking),质子将会衰变。这就是人们的希望。就目前实验所能确定的,质子并不衰变,此即经验。
达维德注意到,如果元归纳法(meta-induction)的确是一位严厉的老师,那么总会存在关于意外解释之间关联的争论。理论的发展是为了解决一个具体的问题。物理学家们发现,理论一旦发展起来,就可以解释一系列截然不同的问题。达维德认为这证明了理论的可行性。如果把既有物理理论与既有物理实体的世界联系起来,这是个不错的主意。但这个想法并不能运用于某些纯数学的物理或宇宙学,或是理论的某些方面为获得所需的额外结果而进行了调整。令人惊奇的数学关系并不一定能在物理上实现。
达维德辩称,如果所有其他尝试都失败了,并且没有比某一理论更好的办法,那么它就聊胜于无。当然,在日常生活或者在物理学中,我们很难知道什么时候得出“没有其他办法”这样的结论比较合适。缺乏想象力或者模型范围过窄都有可能。无论如何,这个观点并不可靠。如果一个理论为真,那么没有替代理论的事实实属多余,如果它非真,那更无关紧要了。对于多重宇宙的例子,有另外的选择:那就是不存在多重宇宙,我已经提到过了,安鲁等人提出的机制可以解释 Λ 值,或者只是碰巧被设定为使得引力符合幺模(unimodular)理论的值。
罗威利(Carlo Rovelli)回应达维德说:
科学家常常依靠非经验的论证来信任理论。在找到经验证据之前,他们会挑选、发展和相信理论。整个科学史都在佐证这一点。达维德用贝叶斯范式(Bayesian paradigm)来描述科学家如何评估各种理论。贝叶斯确证理论上使用的动词“确证”有其专业意义,这与外行和科学家的惯常用法有很大的不同。在贝叶斯理论中,“确证”指的是任何有利于论文的证据,无论多么薄弱……对于外行人和科学家这类人来说,“确证”另有含义:它意味着“非常有力的证据,足以让人接受理论是可靠的信念”……可靠理论和推测理论之间的区别可能并不总是泾渭分明,但却都是科学的基本要素……正是可靠理论的存在凸显科学对社会的价值……达维德的优点在于,他强调并分析了科学家在对理论进行“初步评价”时使用的一些非经验论证。他的缺陷在于混淆了这些非经验论证和[经验]证实之间的关键区别:证实是使一个理论变得可靠,被整个科学界接受,并对社会有应用潜力的过程。达维德的问题在于:他没能说明,在这一点上,只有经验证据才是有说服力的[36]。
听听,听听!
参考文献
[1] 参见,Max Tegmark, Our Mathematical Universe: My Quest for the Ultimate Nature of Reality (New York: Knopf, 2014); Max Tegmark, “Parallel Universes,” Scientific American 288, no. 5 (2003): 40–51; Daniel Kleitman, “It’s You, Again,” Inference: International Review of Science 2, no. 3 (2016), and a letter in reponse, Sheldon Glashow, “A Hand-Waving Exact Science,” Inference: International Review of Science 2, no. 4 (2016); Brian Greene, The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos (New York: Knopf, 2011).
[2] Martin Rees, “Multiverse,” Edge (2017).
[3] Andrei Linde, “Eternally Existing Self-Reproducing Chaotic Inflationary Universe,” Physics Letters B 175, no. 4 (1986): 395–400; Alexander Vilenkin, Many Worlds in One: The Search for Other Universes (New York: Hill and Wang, 2007); Alan Guth, “Eternal Inflation and its Implications,” Journal of Physics A: Mathematical and Theoretical 40 (2007): 6,811–26. For an example of an inflationary universe that does not lead to a multiverse, see Viatcheslav Mukhanov, “Inflation Without Selfreproduction,” Fortschritte der Physik 63 (2015): 36–41, arXiv:1409.2335.
[4] David Deutsch, The Fabric of Reality: The Science of Parallel Universes—and Its Implications (New York: Viking Adult, 1997).
[5] 参见,Raphael Bousso and Leonard Susskind, “The Multiverse Interpretation of Quantum Mechanics,” (2011), arXiv:1105.3796; Dan Falk, “The Multiple Multiverses May Be One and the Same,” Nautilus (2017); Peter Woit, “Cosmological Interpretations of Quantum Mechanics,” Not Even Wrong, May 19, 2011.
[6] 参见,Martin Rees, Just Six Numbers: The Deep Forces That Shape The Universe (New York: Basic Books, 2001); Steven Weinberg, “Living in the Multiverse,” (presented at the Symposium “Expectations of a Final Theory” at Trinity College, Cambridge, September 2, 2005), arXiv:hep-th/0511037; Leonard Susskind, The Cosmic Landscape: String Theory and the Illusion of Intelligent Design (New York: Little, Brown and Company, 2005); Stephen Hawking and Leonard Mlodinow, The Grand Design (New York: Bantam Books, 2010).
[7] This will remain true if we consider observations for, say, another fifty thousand years.
[8] Ben Freivogel et al., “Observational Consequences of a Landscape,” Journal of High Energy Physics 0603:039 (2006), arXiv:hep-th/0505232.
[9] 但是一些物理学家反驳了这一点, 参见,Roman Buniy, Stephen Hsu, and Anthony Zee (2008) “Does String Theory Predict an Open Universe?” Physics Letters B 660, no. 4 (2008): 382–85, doi:10.1016/j.physletb.2008.01.007.
[10] Anthony Aguirre and Matthew Johnson, “A Status Report on the Observability of Cosmic Bubble Collisions,” Reports on Progress in Physics 74, no. 7 (2011), arXiv:0908.4105.
[11] 参见, “New Survey Hints at Ancient Origin for the Cold Spot,” Royal Astronomical Society, April 27, 2014; “Parallel Universes Do Exist and Researchers May Have the Strongest Evidence,” Physics-Astronomy, April 26, 2017.
[12] 对普朗克数据的标准解释在普朗克巡天团队报告中给出。参见,例如, Planck Collaboration et al., “Planck 2015 Results. XIII. Cosmological Parameters,” Astronomy & Astrophysics 594, no. A13 (2016), arXiv:1502.01589. 该报告并未提及多重宇宙。对冷点(cold spot)的解释有赖于使用的统计。参见,Ray Zhang and Dragan Huterer, “Disks in the Sky: A Reassessment of the WMAP ‘Cold Spot’,” (2009), arXiv:0908.3988v2.
[13] Planck Collaboration et al., “Planck 2015 Results. XIII. Cosmological Parameters,” Astronomy & Astrophysics 594, no. A13 (2016), arXiv:1502.01589.
[14] Alan Guth, The Inflationary Universe: The Quest for a New Theory of Cosmic Origins (New York: Perseus Books, 1997).
[15] ASPIC (Accurate slow-roll predictions for inflationary cosmology,暴胀宇宙学的精准慢滚预言).
[16] Jerome Martin, Christophe Ringeval, and Vincent Vennin, “Encyclopaedia Inflationaris,” Physics of the Dark Universe 5–6 (2014): 75–235, arXiv:1303.3787v3.
[17] Ikjyot Singh Kohli, and Michael Haslam, “Mathematical Issues in Eternal Inflation,” Classical and Quantum Gravity 32, no. 7 (2015), arXiv:1408.2249.
[18] 这一点由 Arthur Eddington 所论证。参见他的“On the Instability of Einstein’s Spherical World,” Monthly Notices of the Royal Astronomical Society 90 (1930): 668–78.
[19] 哈勃基于 Vesto Slipher 的早期工作而建。
[20] Albert Einstein, 1923c. 致外尔的明信片(Postcard to Hermann Weyl, May 23, 1923). ETH-Bibliothek, Zürich, Einstein Archive.
[21] 参见,Steven Weinberg, “The Cosmological Constant Problem,” Reviews of Modern Physics 61, no. 1 (1989): 1–23; Sean Carroll, “The Cosmological Constant,” Living Reviews in Relativity 4, no. 1 (2001), arXiv:astro-ph/0004075v2.
[22] Steven Weinberg, “Anthropic Bound on the Cosmological Constant,” Physical Review Letters 59 (1987): 2,607, doi:10.1103/PhysRevLett.59.2607.
[23] Steven Weinberg, “Anthropic Bound on the Cosmological Constant,” Physical Review Letters 59 (1987): 2,607, doi:10.1103/PhysRevLett.59.2607.
[24] Steven Weinberg, “Anthropic Bound on the Cosmological Constant,” Physical Review Letters 59 (1987): 2,608, doi:10.1103/PhysRevLett.59.2607.
[25] Steven Weinberg, “The Cosmological Constant Problem,” Reviews of Modern Physics 61, no. 1 (1989), doi:10.1103/RevModPhys.61.1.
[26] P. J. E. Peebles: “The Gravitational Instability of the Universe,” The Astrophysical Journal 147 (1967): 859.
[27] Hugo Martel, Paul Shapiro, and Steven Weinberg, “Likely Values of the Cosmological Constant,” The Astrophysical Journal 492 (1998): 29
[28] Hugo Martel, Paul Shapiro, and Steven Weinberg, “Likely Values of the Cosmological Constant,” The Astrophysical Journal 492 (1998): 29.
[29] Anthony Aguirre, “On Making Predictions in a Multiverse: Conundrums, Dangers, and Coincidences,” in Universe or Multiverse? ed. Bernard Carr (Cambridge: Cambridge University Press, 2009), 367–86, arXiv:astro-ph/0506519.
[30] Glenn Starkman and Roberto Trotta, “Why Anthropic Reasoning Cannot Predict Λ,” Physical Review Letters 97, no. 20 (2006), arXiv:astro-ph/0607227v2.
[31] Andrei Linde and Mahdiyar Noorbala, “Measure Problem for Eternal and Non-Eternal Inflation,” Journal of Cosmology and Astroparticle Physics 1009:008 (2010), arXiv:1006.2170.
[32] Qingdi Wang, Zhen Zhu, and William Unruh, “How the Huge Energy of Quantum Vacuum Gravitates to Drive the Slow Accelerating Expansion of the Universe,” Physical Review D 95, no. 103,504 (2017), arXiv:1703.00543.
[33] 参见,Alexander Vilenkin, Many Worlds in One: The Search for Other Universes (New York: Hill and Wang, 2007).
[34] 注意此处的陈述“在任意时刻”(at any moment)为何意存在显著的困难。George Ellis and William Stoeger, “A Note on Infinities in Eternal Inflation” General Relativity and Gravitation 41, no. 7 (2010): 1,475–84, arXiv:1001.4590.
[35] Richard Dawid, “The Significance of Non-Empirical Confirmation in Fundamental Physics,” (2017), arXiv:1702.01133.
[36] Carlo Rovelli, “The Dangers of Non-Empirical Confirmation,” (2016), arXiv:1609.01966.
作者简介
George Ellis (乔治·埃里斯)是南非好望角大学数学与应用数学系(University of Cape Town in South Africa)复杂系统荣休杰出教授。埃里斯教授的研究领域横跨引力和宇宙学、复杂性和因果关系、大脑和行为三大领域,从观察宇宙不同尺度的不同性质到研究人类大脑中基本情感系统的本质。埃利斯教授著作等身,迄今已经发表了 500 多篇学术论文,出版了相当数量的研究专著。早在 1973 年,他就和斯蒂芬霍金一起合作出版了名著《时空大尺度结构》(The Large Scale Structure of Space-Time)。他最近的著作是《物理学如何奠定思维?人类背景下自上而下因果的关系》(How Can Physics Underlie the Mind? Top-Down Causation in the Human Context),施普林格出版社2016年出版。
本文译自:Physics on Edge, https://inference-review.com/article/physics-on-edge, DOI: 10.37282/991819.17.34。 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|