本帖最后由 愚工688 于 2022-11-8 02:35 编辑
我认为偶数方根内的素对数量是没有规律性的,不具有可计算性。
我把偶数方根外的素对数量记作S1,偶数方根内的素对数量记作S2,偶数全部的素对数量S(M)=S1+S2.
例如:
偶数54600、59220、59250等偶数虽然不算小,但是都没有方根内的素数对。
而偶数2A的方根外的素对A±x,则有一个规律性:变量x在除以 √(2A)内的素数时不与偶数半值A的余数构成同余关系的。
由于自然数在除以任意素数时的余数呈现周期性变化,因此不与偶数半值A的余数构成同余关系的变量x必然存在。
这就是哥德巴赫猜想成立的无可辩驳的理由。
例一,偶数100的x的对应余数条件
由偶数100的半值50除以2、3、5、7的余数条件50(j2=0,j3=2,j5=0,j7=1),
得出x的余数条件:x(y2=1,y3=0,y5≠0,y7≠1与6),
即x的余数条件:2(1)、3(0)、5(1,2,3,4)、7(0,2,3,4,5),
有以下不同余数的20种组合:
(1,0,1,0),(1,0,1,2),(1,0,1,3),(1,0,1,4),(1,0,1,5);
(1,0,2,0),(1,0,2,2),(1,0,2,3),(1,0,2,4),(1,0,2,5);
(1,0,3,0),(1,0,3,2),(1,0,3,3),(1,0,3,4),(1,0,3,5);
(1,0,4,0),(1,0,4,2),(1,0,4,3),(1,0,4,4),(1,0,4,5);
运用中国剩余定理,每组不同的余数条件组合在素数连乘积内(此题即2×3×5×7=210 个连续自然数中)对应于一个唯一的整数,有
(1,0,1,0)=21, (1,0,1,2)=51, (1,0,1,3)=171, (1,0,1,4)=81, (1,0,1,5)=201;
(1,0,2,0)=147, (1,0,2,2)=177, (1,0,2,3)=87, (1,0,2,4)=207, (1,0,2,5)=117;
(1,0,3,0)=63, (1,0,3,2)=93, (1,0,3,3)=3, (1,0,3,4)=113, (1,0,3,5)=33;
(1,0,4,0)=189, (1,0,4,2)=9, (1,0,4,3)=129, (1,0,4,4)=39, (1,0,4,5)=159;
其中处于x值取值区域[0,47]内的x值有:21,9,3,33,39,
A= 50 ,x= : 3 , 9 , 21 , 33 , 39 ,( 47 ——符合条件b),
代人A±x,得到符合条件a的全部素对:
[ 100 = ] 47 + 53,41 + 59,29 + 71,17 + 83,11 + 89,(3 + 97 )
M= 100 S(m)= 6 S1(m)= 5 Sp(m)≈ 4.571 δ1(m)≈-.086 K(m)= 1.33 r= 7
* Sp( 100)=[( 100/2- 2)/2]*( 1/ 3)*( 4/ 5)*( 5/ 7)= 4.571
例二,偶数98的x的对应余数条件以及能够构成素对的变量x值
由偶数98的半值49除以2、3、5、7的余数条件49(j2=1,j3=1,j5=4,j7=0),
得出x的余数条件:x(y2=0,y3=0,y5≠1、4,y7≠0),
即x的余数条件:2(0)、3(0)、5(0,2,3)、7(1,2,3,4,5,6),
共有以下不同素数的余数组合18组及依据中国剩余定理的解值,它们散布于[0,209]区域:
(0,0,0,1)-120,(0,0,0,2)-30, (0,0.0,3)-150,(0,0,0,4)-60,(0,0,0,5)-180,(0,0,0,6)-90;
(0,0,2,1)-162,(0,0,2,2)-72, (0,0,2,3)-192,(0,0,2,4)-102, (0,0,2,5)-12, (0,0,2,6)-132;
(0,0,3,1)-78, (0,0,3,2)-198,(0,0,3,3)-108,(0,0,3,4)-18, (0,0,3,5)-138,(0,0,3,6)-48;
其中处于x值取值区域[0,46]内的x值有:30,12,18,
因此偶数98的素对有49±30,49±12,49±18 。
|