电磁学、电动力学很难,但是不管有多难,我们要学它。曾经有这么一个问题,说如果人类要毁灭了,我们要给后代留下一句话,请问你选哪一句。费曼说他要选“All things are made of atoms”,要告诉我们的后代,事物都是由原子,“不可分的”atom ,构成的。关于这样一个问题,我不知道我们普通人有没有资格也参与。如果让我回答这个问题的话,我觉得我会选这么一句:要学会用电,并且在这句旁边,我希望加上一个电火花的符号,因为我个人觉得电对于人类社会的发展太重要了。今天我们的社会是说什么也不能回到从前没电的时代了。
有这样一些海里的鱼。这个叫 Electric Ray ,如果大家用现代英汉字典的话直接翻译为电射线了。不是的,这是海里的鱼,现在叫电鳐。还有 Torpedo ,不是鱼雷,叫电鯆。今天有电的知识我们就知道这些东西能够放电。到 1773 年英国剑桥大学有一位富豪科学家,叫卡文迪许,才认为这些鱼是使用了这种物理的东西,electricity ,我猜到这个时候它们才有的 Electric Ray 这样的名字。
现在我们知道了在 Electron 上面会 charge 一些东西,是什么东西也不知道,但是咱们可以拿来玩儿。有很多很多透明的类似树脂的东西,什么胶漆棒、玻璃、牛角梳、松香等等,这些东西拿过来一通乱擦看能不能吸引脏东西。你会发现两根相同的被摩擦过的东西,它们互相是排斥的。很有趣的是,玻璃上面带的什么东西不知道,松香带的什么东西不知道,但是玻璃和松香它们俩是互相吸引的,这就告诉我们这个 Electron ,这个琥珀上带的东西,不是单纯的某一种东西,而是可能表现出正负或者左右,或者男女这样不同极性的东西。所以说有人把其中一种东西叫做玻璃电,一种叫做松香电。后来美国著名的政治家和科学家富兰克林把它定为正电和负电。请大家记住正电和负电不是天然就认识到的哈。
这样一个带电的现象被我们所知道,摩擦带电。因为一个方向上带的是同样的电,互相排斥,所以像这样一个滑滑梯的小女孩她的头发之间互相排斥就能飘起来,这种现象 2600 年前古希腊哲人泰尔斯注意到了,他说是摩擦让松香这种东西 magnetic ,这个 magnetic 请大家不要随便理解为磁性了,这里是吸引的意思,就是摩擦让松香会吸引一些什么东西,这个地方为什么用 magnetic 来描述呢?因为你把一个东西如果让它带上所谓电的时候,它是皮毛、小纸屑、灰尘都吸引,但是大自然有一个东西叫做磁,磁吸引别的东西是非常挑剔的,古代人类也注意到还有磁这种东西。
电既然让我们觉得那么好玩,所以我们要产生电,而且把电能够留住玩儿。这个时候出现一个大神级人物 Otto von Guericke ,这个人首先发明了抽气泵,他做了著名的马哥德堡实验,向我们演示了大气压有多么强大,但是他还干了一件事情。摩擦带电,什么东西摩擦带电,什么东西既不磨手又能够带电带的多? 他发现硫磺这种东西带电(请大家记住硫磺是单元素物质,是大自然赏赐给我们的,火山口有大块的硫磺,公斤级)。1672 年他发现硫磺的球很容易带上电,看这位老兄对于科学贡献,他还发明了气泵产生真空,率先用硫磺球产生更多电,将来你会发现当电遇到真空的时候会给我们带来多少知识。很可惜不知道你们有没有从哪本科学书本里面读到这个人 Otto von Guericke ,他应该出现在热力学书里面、统计力学书里面,但是都没有。
比方讲一个简单的例子,将来大家遇到黑体辐射都会说一个温度等于 T 的黑体,它辐射的总能量正比于 T 的 4 次方,大家还记得吗?这叫斯蒂凡·玻尔兹曼公式。知道当年人家是怎么做实验得出这公式的吗?就是在恒温源的旁边套一个金属壳再套一个金属壳再套一个金属壳,当你测不同金属壳上的温度的时候,发现金属壳往外面的温度是越来越低。但是每一个金属壳和金属壳中间它一点也没扣你的能量,应该有能量守恒。你要求这样的不同的壳处在不同的温度,它的辐射能量要守恒的时候,你就会发现它的能量一定正比 T 的 4 次方这个东西。这就叫做 Dulong-Petit 定律。这个定律出现在我们的热力学书里,但是你会发现没有一个热力学的书告诉我们,人家是那么聪明做出来的一个实验,所以我们读不懂。
到这个时候关于电我们也知道电场了,也知道作用力了。就又照搬引力的理论,叫势理论。早在亚利士多德的时候,他就用了 act 和 potency 这两个东西来描述物理。Act 对应的希腊语叫 energia ,就是我们所谓的 energy 。应该就是我们汉语里面的对应的乾卦,所谓的自强不息,是运动,mv^2/2 。Potency 是潜能,对应的是 dynamis ,是潜能、势,大概就对应我们中国话的坤卦,说君子以厚德载物,这是表现势的一个东西。其实懂得这个点的时候,就会用这势函数来表达一个电荷在外面产生的这样的一个东西。那么势函数是什么东西?电荷的势函数是一个简单的实数,可以简单地相加,1+2=3 ,2+3=5 ,这个就容易很多了。这是在引力里面带来的这一套学问。
现在我去算一块物质里面如果还有电荷分布,首先大体上正电荷、负电荷相等的,如果再有一点自由电荷,它里面的电势是什么样子?你做近似计算的时候,发现有一项是对电荷密度的积分,有一项是对它的偶极矩散度的积分,如果我只计算这两项的时候,就会得到了电场的散度等于电荷密度减去偶极矩的密度,于是如果你要引出一个,就可以把这个地方的方程又写成泊松方程的形式。这个地方在许多书里面都会告诉我们,说这一个表达式引入的 D 就叫电位移,并且把电位移错误地描述成好像跟电偶极矩似的。请大家记住,我们看到的电磁学的书,十有八九关于电位移的描述是和电极化弄混了。这个东西到底是什么意思不太好理解,待会儿我们慢慢说。不管怎么着,将来我们会注意到这一个词叫电位移,Electric Displacement 。当我们从英文翻译成中文的时候,我们就照着字面翻译,因为我们连脑子都不过,我们根本不去管它是什么意思,我们也不管这个字面从哪来的。但是你看德国人较真,德国人都要疯了。因为电位移不好理解,所以德国人管它叫介电位移,管它叫介电激励,管它叫电的流密度,管它叫位移密度,管这叫位移流密度。德国人关于这个问题概念的理解整个就疯了,实在弄不清楚它是什么意思,你看有各种各样的名字。在我们的书里面,三个字,电位移,一下子就糊弄过去了。这是什么意思?我们待会再说。但是我请大家记住一条就行了,当我们谈论空间和这物质电的性质的时候,你只要记住光有电场强度E是不够的,还需要一个能够描述连带的表现出一定物质性质的物理量,这个物理量叫 D 就行了。至于你管它叫什么不重要,重要的是你知道它该是什么样的东西,表现出什么。它该表现出什么呢?你会发现它该表现出什么。如果有一堆电荷,它在外电势中我算它的势能是这个样子,如果这一堆电荷我算它们互相作用的时候,势能是这个样子。就差个 1/2 因子也没错。相当于咱们大家从远处互相凑到一堆,说花的功是处在外电场中的一半。这个表达没关系,但是不管怎么着,当我们讨论在电势场里面的电荷密度有一点点儿变化的时候,一点点儿变化就等于它的势能的变化,你会发现你表达这样一个表达式变化的时候,最后是可以得出了一个 E·δD 。也就是当我们看一个电荷体系,它的总能量有一点点而变化的时候,你会发现表达成电场 E 和 D 的变分之间的积分。这是什么意思?你和热力学里面公式类比,你突然就明白它是什么东西了。热力学的方程我们知道内能微分 dU=TdS-PdV ,这样的前面不带微分的东西 T 和 P ,我们管它叫强度量,压强和温度。而体积和熵我们管它叫广延量。所以你看电磁场的能量表达式也是这个样的。因为是场,有空间积分,你会发现电场强度对应的大概就是温度、压强这样的强度量,而 D 大概对应的是熵或者体积这样的一个广延量。也就是我们描述一个电介质的时候,它里面我们要用到两个物理量,这两个物理量凑到一起的时候的量纲是能量(体密度)。
所以我们就知道我们除了需要一个电场强度以外,我们还需要一个东西,那个东西叫 D ,那个东西 D 和 E 的乘积为能量密度。你知道需要这么一个量就行了,至于它是不是刚才那样引进来的已经不重要了。我请大家一定要记住到物理学一个很重要的事实,当我们从一个简单的、含糊的东西里面提取出一个也许不正确的概念的时候,将来它也很可能在我的物理学里面自动找到它的正确的位置。它需要你将来在复杂的理论体系里,在更高的层面上去理解它。而如果这时候你还揪着它当初被引进来的概念的时候,你就会发现你越理解越糊涂。
▽·B=0的这样一个东西,以及 B 本身是可以表示成一个矢量的叉乘的事情,就注定了这个矢量本身不是固定的,是可以有一个自由度的。这个自由度就叫规范自由度,将来会被发展成量子场论,会被发展成规范场论。而现在我们有了磁矢势这个东西,在和电势这个东西凑到一起的时候,这就是所谓的四矢量,就会让你很轻松地进入到电磁场的相对论。
介质的磁矢势有了以后,如果是介质的磁矢势再加上偶极子的贡献,你推导的公式就跟电介质一样,能够导出 ▽×B 的表达,除了电流密度以外,还有一个磁化叉乘的东西,这会让我们引入一个磁场强度,一个新的东西叫 H 。这时候你会发现关于 B 和 H 叫什么名字的问题又让人疯了,就是它历史上有各种各样不同的名字。但是我请大家记住,这个时候一定要记住到 H 是一个类强度量的东西,它是磁场强度,而 B 是一个流体物理的类比,是描述物质性质的东西,它叫磁通量密度,就是类似水流量密度,通量密度。现在关于静电场和磁场,我们就有了什么?就有这两套方程,一个是静电场它的表示 D 的源是这个样子,同时表示 E 它是个无旋场;而磁场的东西,这是表示的是磁场强度 H 和它的源,同时告诉 B 是一个无源场。这有两套方程了。
当然了法拉第做出很多东西,他做电化学,他发现从电化学两极上面分析出的东西的质量比或者摩尔比,始终是个小的比例,于是乎他提出,这个世界上也许电本身不是连续的,存在电原子的概念。和他可以相比的另外一个化学家,是法国的化学家拉瓦锡。拉瓦锡从化学反应 a 加 b 生成 c ,a 物质和 b 物质的质量应该是小的整数比这个概念,就判断出原子可以是不同的,但原子里面一定有具有相同质量的组成单元,竟然能够提出核子的概念,这就是人家作为伟大的科学家和别人不一样的地方。当然了,法拉第还提出了一个很重要的东西,认为场的传播是需要时间的,可以比作水的震动,他老人家差一点就没说出电磁波这个词来。