|
5楼的题目可以用4楼的方法。《从问题出发——关于解题的理解和讲授 》。
1,\(\frac{1×2×3}{2^6-1^6}+\frac{2×3×4}{3^6-1^6}+\frac{3×4×5}{4^6-1^6}+\frac{4×5×6}{4^6-1^6}+\frac{5×6×7}{6^6-1^6}+…=\frac{1}{6}\)
\(\frac{2}{3*7},\frac{5}{3*13},\frac{9}{3*21},\frac{14}{3*31},\frac{20}{3*43},\frac{27}{3*57},\frac{35}{3*73},\frac{44}{3*91},\frac{54}{3*111},\frac{65}{3*133},...\frac{n(n+1)/2-1}{3(n(n+1)+1)}=\frac{1}{6}\)
2,\(\frac{1×3×5}{3^6-2^6}+\frac{3×5×7}{5^6-2^6}+\frac{5×7×9}{7^6-2^6}+\frac{7×9×11}{9^6-2^6}+\frac{9×11×13}{11^6-2^6}+…=\frac{1}{28}\)
\(\frac{3}{7*19},\frac{8}{7*39},\frac{15}{7*67},\frac{24}{7*103},\frac{35}{7*147},\frac{48}{7*199},\frac{63}{7*259},\frac{80}{7*327},\frac{99}{7*403},\frac{120}{7*487},...\frac{n^2-1}{7(4n^2+3)}=\frac{1}{28}\)
3,类似的题。 有这样一串数: \(a(n)=n^4+n^2+1\)
3, 21, 91, 273, 651, 1333, 2451, 4161, 6643, 10101, 14763, 20881, 28731, ......
求证:\(\displaystyle\sum_{n=1}^{\infty}\frac{n}{n^4+n^2+1}=\frac{1}{2}\)
\(\frac{1}{3},\frac{3}{7},\frac{6}{13},\frac{10}{21},\frac{15}{31},\frac{21}{43},\frac{28}{57},\frac{36}{73},\frac{45}{91},\frac{55}{111},\frac{66}{133},\frac{78}{157},...\frac{n(n+1)/2}{n(n+1)+1}=\frac{1}{2}\) |
|