数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 3862|回复: 10

双清学术出版社上看剖析“abc猜想”

[复制链接]
发表于 2023-3-9 14:45 | 显示全部楼层 |阅读模式
双清学术出版社很好很棒。
发表于 2023-3-9 21:21 | 显示全部楼层
哥猜之蔡氏四素数解

设 2n+15 >=49,且 p1, p2, p3=2*p2 -15, p4=2*p2+15 都是素数,

则 2n=p1+p3 与 2n+15=p1+2*p2 及 2n+30=p1+p4 至少有一组素数(p1, p2, p3, p4)解。

蔡氏四素数解是偶数哥猜与奇数哥猜合二为一的素数解。


哥猜之蔡氏四素数解

设 2n+105 >=169,且 p1, p2, p3=2*p2 -105, p4=2*p2+105 都是素数,

则 2n=p1+p3 与 2n+105=p1+2*p2 及 2n+210=p1+p4 至少有一组素数(p1, p2, p3, p4)解。

蔡氏四素数解是偶数哥猜与奇数哥猜合二为一的素数解。




同邻距的三生素数,

且前一组三生素数之和是后一组三生素数的首项,

最小解:p=7,  ( p, p+30, p+100 ) 与 ( 3p+130, 3p+160, 3p+230 )

最小解:p=11,( p, p+20, p+120 ) 与 ( 3p+140, 3p+160, 3p+260 )

最小解:p=13,( p, p+10, p+30 ) 与 ( 3p+40, 3p+50, 3p+70 )

最小解:p=17,( p, p+150, p+560 ) 与 ( 3p+710, 3p+860, 3p+1270 )

最小解:p=19,( p, p+40, p+180 ) 与 ( 3p+220, 3p+260, 3p+400 )

最小解:p=23,(  p, p+20, p+90 ) 与 ( 3p+110, 3p+130, 3p+200 )

最小解:p=23,(  p, p+30, p+260 ) 与 ( 3p+290, 3p+320, 3p+550 )

最小解:p=29,( p, p+30, p+80 ) 与 ( 3p+110, 3p+140, 3p+190 )

最小解:p=29,( p, p+30, p+110 ) 与 ( 3p+140, 3p+170, 3p+250 )

最小解:p=29,( p, p+30, p+740 ) 与 ( 3p+770, 3p+800, 3p+1510 )

最小解:p=31,( p, p+30, p+160 ) 与 ( 3p+190, 3p+220, 3p+350 )

最小解:p=31,( p, p+30, p+490 ) 与 ( 3p+520, 3p+550, 3p+1010 )

最小解:p=37,( p, p+30, p+520 ) 与 ( 3p+550, 3p+580, 3p+1070 )

最小解:p=37,( p, p+30, p+1150 ) 与 ( 3p+1180, 3p+1210, 3p+2330 )

最小解:p=41,( p, p+20, p+150 ) 与 ( 3p+170, 3p+190, 3p+320 )

最小解:p=43,( p, p+30, p+250 ) 与 ( 3p+280, 3p+310, 3p+530 )

最小解:p=47,( p, p+80, p+270 ) 与 ( 3p+350, 3p+430, 3p+620 )

最小解:p=53,( p, p+30, p+620 ) 与 ( 3p+650, 3p+680, 3p+1270 )

最小解:p=59,( p, p+30, p+350 ) 与 ( 3p+380, 3p+410, 3p+730 )

最小解:p=61,( p, p+40, p+600 ) 与 ( 3p+640, 3p+680, 3p+1240 )

最小解:p=67,( p, p+30, p+400 ) 与 ( 3p+430, 3p+460, 3p+830 )

最小解:p=71,( p, p+30, p+920 ) 与 ( 3p+950, 3p+980, 3p+1870 )

最小解:p=73,( p, p+30, p+1420 ) 与 ( 3p+1450, 3p+1480, 3p+2870 )

最小解:p=79,( p, p+30, p+280 ) 与 ( 3p+310, 3p+340, 3p+590 )

最小解:p=83,( p, p+30, p+290 ) 与 ( 3p+320, 3p+350, 3p+610 )

最小解:p=89,( p, p+60, p+2450 ) 与 ( 3p+2510, 3p+2570, 3p+4960 )

最小解:p=97,( p, p+60, p+880 ) 与 ( 3p+940, 3p+1000, 3p+1820 )

这种 同邻距的三生素数 有 无限多组 !!!


三连同邻距的三生素数,

且前一组三生素数之和是后一组三生素数的首项,

(222337, 222367, 222437) 与 (667141, 667171, 667241) 及 (2001553, 2001583, 2001653)

(5021, 5171, 5581) 与 (15773, 15923, 16333) 及 (48029, 48029, 48179, 48589)


回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-3-12 15:51 | 显示全部楼层
双清学术出版社是按国际运营模式开放运营。

点评

祝你成功!  发表于 2023-3-12 15:55
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-3-13 22:32 | 显示全部楼层
双清学术出版社按国际模式运作,同行评议,一视同仁。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-3-16 08:56 | 显示全部楼层
双清学术出版社按国际模式运作,同行评议,一视同仁。是真成果,双清学术出版社旗下《数学发现》期刊不会埋没。
回复 支持 反对

使用道具 举报

发表于 2024-3-8 17:29 | 显示全部楼层
定理:王若仲认可的那个哥猜证明的证明人鲁思顺是个二百五。
回复 支持 反对

使用道具 举报

发表于 2025-1-9 08:57 | 显示全部楼层
窥熊一兵王若仲赞评鲁思顺哥猜证明之一斑而知熊王诸多猜想证明之全豹是垃圾,暴露出熊一兵王若仲的愚蠢与无知
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-20 04:11 , Processed in 0.085021 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表