|

楼主 |
发表于 2023-3-28 00:26
|
显示全部楼层
本帖最后由 dodonaomikiki 于 2023-3-28 00:46 编辑
\begin{align*}
OK &=r\\
\Longrightarrow \frac{r^2cos^2\alpha}{ a^2 }+ \frac{r^2sin^2\alpha}{ b^2 }&=1\\
\Longrightarrow r^2&=\frac{1}{ \frac{cos^2\alpha}{ a^2 }+ \frac{sin^2\alpha}{ b^2 } }\\
\end{align*}
\(Set: PB=W\)
\(P(x_0, y_0)\)
\(B( x_0+Wcos\alpha, y_0 +Wsin \alpha )\)
\begin{align*}
\Longrightarrow \frac{x_0+Wcos\alpha}{ a^2 }+ \frac{y_0 +Wsin \alpha }{ b^2 }&=1\\
\Longrightarrow ( \frac{cos^2\alpha}{ a^2 } + \frac{sin^2\alpha}{ b^2 } )W^2+( \frac{2x_0cos\alpha}{ a^2 } + \frac{2y_0sin\alpha}{ b^2 } )W+ \frac{x_0^2}{ a^2 }+ \frac{y_0^2}{ b^2 } -1 &=0\\
\Longrightarrow PA \bullet PB&=\frac{ |\frac{x_0^2}{ a^2 }+ \frac{y_0^2}{ b^2 } -1 | }{ \frac{cos^2\alpha}{ a^2 } + \frac{sin^2\alpha}{ b^2 } }\\
\Longrightarrow \frac{ PA \bullet PB}{ r^2 } &=\frac{x_0^2}{ a^2 }+ \frac{y_0^2}{ b^2 } -1 \\
\Longrightarrow Likewise, \frac{ PC \bullet PD}{ r'^2 } &=\frac{x_0^2}{ a^2 }+ \frac{y_0^2}{ b^2 } -1 \\
\Longrightarrow \frac{ PA \bullet PB}{ r^2 } &= \frac{ PC \bullet PD}{ r'^2 }
\end{align*}
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|