|

楼主 |
发表于 2023-4-20 09:14
|
显示全部楼层
\(一个半圆里挤有2个小半圆与1个小圆,已知2个小半圆半径是x,y, \ \ \ x≥y\)
\(小圆半径\ r=\frac{x^2y+xy^2}{x^2+xy+y^2},\ \ \ \ \cos∠BDC=\frac{x^2-y^2}{x^2+y^2}\)
4个方程都可以得到 \(r=\frac{x^2y+xy^2}{x^2+xy+y^2}\)
\(\frac{(x)^2+(y+r)^2-(x+y-r)^2}{2(x)(y+r)}=\frac{(x+y)^2+(y+r)^2-(x+r)^2}{2(x+y)(y+r)}\)
\(\frac{(y)^2+(x+r)^2-(x+y-r)^2}{2(y)(x+r)}=\frac{(x+y)^2+(x+r)^2-(y+r)^2}{2(x+y)(x+r)}\)
\(\frac{(x)^2+(x+y-r)^2-(y+r)^2}{2(x)(x+y-r)}=\frac{(x+r)^2-(y)^2-(x+y-r)^2}{2(y)(x+y-r)}\)
\(\frac{(y+r)^2-(x)^2-(x+y-r)^2}{2(x)(x+y-r)}=\frac{(y)^2+(x+y-r)^2-(x+r)^2}{2(y)(x+y-r)}\) |
|