|

楼主 |
发表于 2023-4-19 20:55
|
显示全部楼层
假设 BC 的长度为 u。
- a' = 16 - a; b'=b=0; c'=c=u; d=a+c-b; d'=a'+c'-b';
- f = d - 8; f' = d' - 8;
- h = c + 9 I; h' = c' - 9 I;
- (* p 关于直线 AB 垂足的坐标 *)
- Foot[p_, a_, b_] := (a' b - a b'+ (a - b) p' + (a' - b') p) / (2 (a' - b'));
- Foot'[p_, a_, b_] := (a b' - a' b + (a' - b') p + (a - b) p') / (2 (a - b));
- (* 过 A、B 两点的复斜率定义 *)
- k[a_, b_] := (a - b)/(a' - b');
- k'[a_, b_] := 1/k[a, b];
- (* 直线 AB 与 CD 的交点,注意第二式前头有个负号 *)
- FourPoint[a_, b_, c_, d_] := ((c' d - c d')(a - b) - (a' b - a b') (c - d)) / ((a - b)(c' - d') - (a' - b') (c - d));
- FourPoint'[a_, b_, c_, d_] := -((c d' - c' d)(a' - b') - (a b' - a' b) (c' - d')) / ((a - b)(c' - d') - (a' - b') (c - d));
- (* E 是 CD 与 BH 的交点 *)
- e = FourPoint[c, d, b, h]; e' = FourPoint'[c, d, b, h];
- Print[{e, e'}]
- (* ∠FEB = 45°,BE 是 ∠ABC 的角平分线 *)
- Solve[{k[f, e]/k[b, e] == -I, k[a, b] k[b, c] == k[b, e]^2, u > 0}, {a, u}]
复制代码
输出:
\[
\left\{-\frac{(-u-9 i) (u (a+u)-u (-a+u+16))}{-((a-16) (-u-9 i))-a (-u+9 i)},\frac{(-u+9 i) (u (-a+u+16)-u (a+u))}{-((a-16) (-u-9 i))-a (-u+9 i)}\right\} \\
\\
\{\{a\to 8+15 i,u\to 15\}\}
\]
|
|