数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 21510|回复: 34

每次投篮命中率为 2/3,连续三次投中则通过,连续两次投不中则不通过,求通过的概率

[复制链接]
发表于 2023-4-20 11:29 | 显示全部楼层 |阅读模式
上网看到的,觉得很难,是版主的专业,正好请教版主。

题目:某同学进行一项投篮比赛,若该同学出现连续三次投篮成功,则通过测试,若出现连续两次失败,则未通过测试,已知该同学每次投篮的成功概率均为23。,则该同学通过测试的概率为多少?
发表于 2023-4-20 16:16 | 显示全部楼层
随机过程可解,通过测试的概率为 3251,(解答过程太啰嗦,略之)
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-4-20 16:22 | 显示全部楼层
我正想看看如何用随机过程的理论解决概率问题。
回复 支持 反对

使用道具 举报

发表于 2023-4-20 16:38 | 显示全部楼层
答案是32/51.
1、我用的是递归工具和序贯图这2个基本工具。解决这种问题也挺好用的,这个论坛上基本所有的比赛之类的概率题都可以按此方法做。
2、等坛主发解答;如是不同解法我再分享我的解法。
3、随机过程理论怎么做?方便的话发出来学习比较下,看看哪种方法简单?
回复 支持 反对

使用道具 举报

发表于 2023-4-20 19:32 | 显示全部楼层


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

点评

首先,怎么会有一个事件的概率超过1的情况出现,其次,过程分析并不全面,得出这个结果的机器或软件有问题  发表于 2023-5-6 15:49
謝謝陸老師  发表于 2023-4-21 20:13
回复 支持 反对

使用道具 举报

发表于 2023-4-20 22:05 | 显示全部楼层
我给出我的解法:递归和贯序图法。
P=32/51.

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

点评

謝謝老師  发表于 2023-4-21 20:13
回复 支持 反对

使用道具 举报

发表于 2023-4-20 22:13 | 显示全部楼层

老实说,5楼陆老师的解法没有看懂。而且解法中有明显的错误。
比如概率出现了4/3,27/17这样的值,概率明显大于1了。概率加法使用有误。
拉锯过程有很多组合,好像也不局限于解法中举的例子。

但是奇怪的是,结果是对的。

此贴供讨论哈!
回复 支持 反对

使用道具 举报

发表于 2023-4-21 00:05 | 显示全部楼层
我想到了一个名词 马尔可夫过程。
这个东西 我只是听说 但是没看过任何文档。哪个有这个相关的书籍 可以给我一个

点评

马尔可夫链,用吸收概率,解方程组,也能够做的!  发表于 2023-4-21 01:01
马尔可夫链/过程的内容我是学习过的。应该不是解决这个问题的。  发表于 2023-4-21 00:11
推荐一本书《概率导论》。Dimitri P. Bertsekas 美1 John N. Tsitsiklis 著郑忠国童行伟译。你在zlibrary上搜。  发表于 2023-4-21 00:10
回复 支持 0 反对 1

使用道具 举报

发表于 2023-4-21 01:20 | 显示全部楼层
lihp2020 发表于 2023-4-21 00:05
我想到了一个名词 马尔可夫过程。
这个东西 我只是听说 但是没看过任何文档。哪个有这个相关的书籍 可以给 ...

用马尔可夫链,吸收概率方程组来解,也是可以做的。解出来结果也是32/51.
6个节点的状态转移,2个常返态节点,4个非常返态节点,6个方程的方程组。晚些时候我可以补充具体解法。
这个方法用到的知识点比较多;而且做法也比较繁琐的。

点评

赶紧 给个出来 我看看 6个方程 是不是我想象的那种  发表于 2023-4-21 14:04
我用的就是这。  发表于 2023-4-21 07:57
回复 支持 反对

使用道具 举报

发表于 2023-4-21 19:14 | 显示全部楼层
用马尔可夫链:吸收平衡方程的解法:

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x

点评

謝謝老師  发表于 2023-4-21 20:14

评分

参与人数 1威望 +15 收起 理由
Ysu2008 + 15 很给力!

查看全部评分

回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-9 10:36 , Processed in 0.097473 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: