|

楼主 |
发表于 2023-5-6 08:02
|
显示全部楼层
存在就是真理!!!大家想想:为什么可以这样?!!!
\(\displaystyle\sum_{k=0}^9\frac{(k+10)!}{k!\ \ 10!}\bigg(\frac{2}{5}\bigg)^k\bigg(\frac{3}{5}\bigg)^{11}+\sum_{j=10}^{\infty}\frac{(10+10)!}{10!\ \ 10!}\bigg(\frac{2}{5}\bigg)^j\bigg(\frac{3}{5}\bigg)^{j+2}2^{j-10}\)
\(=\frac{72034569102897}{95367431640625}+\frac{7734107639808}{95367431640625}=\frac{15953735348541}{19073486328125}\)
前半部分还真不知道怎么化简(虽然只有10项),后半部分肯定是可以化简的(因为有无穷项),
\(\displaystyle\bigg(\sum_{k=0}^9\frac{(k+10)!}{k!\ \ 10!}(\frac{2}{5})^k\bigg)*\bigg(\frac{3}{5}\bigg)^{11}+\frac{(10+10)!}{10!\ \ 10!}*\frac{(3/5)^2(3/5)^{10}(2/5)^{10}}{(3/5)^2+(2/5)^2}\)
如果把10换作1,2,3,4,5,6,7,8,9,10, 可以得到这样一串数:
{9/13, 1161/1625, 29889/40625, 153333/203125, 19602081/25390625, 99969957/126953125,978304149/1220703125, 24845595021/30517578125, 126001649601/152587890625, 15953735348541/19073486328125} |
|