|
题目: 正 ΔABC, D 是 AC 上一点, AD=n(n=2,3,4,...)*DC, 过 A 作 BD 垂线, 垂足为 F, 求 ∠DFC=?
\(∠DAF=a,∠DBA=30+a,∠DBC=30-a,∠DFC=x\)
\(n=2:\ \frac{\sin(30-a)}{\sin(30+a)}*\frac{\sin(60-a)}{\sin(a)}*\frac{\sin(90-a-x)}{\sin(a+x-30)}=\frac{1}{2}*\frac{4}{1}*\frac{2}{4}\)
\(n=3:\ \frac{\sin(30-a)}{\sin(30+a)}*\frac{\sin(60-a)}{\sin(a)}*\frac{\sin(90-a-x)}{\sin(a+x-30)}=\frac{1}{3}*\frac{5}{2}*\frac{6}{5}\)
\(n=4:\ \frac{\sin(30-a)}{\sin(30+a)}*\frac{\sin(60-a)}{\sin(a)}*\frac{\sin(90-a-x)}{\sin(a+x-30)}=\frac{1}{4}*\frac{6}{3}*\frac{12}{6}\)
\(n=5:\ \frac{\sin(30-a)}{\sin(30+a)}*\frac{\sin(60-a)}{\sin(a)}*\frac{\sin(90-a-x)}{\sin(a+x-30)}=\frac{1}{5}*\frac{7}{4}*\frac{20}{7}\)
\(n=6:\ \frac{\sin(30-a)}{\sin(30+a)}*\frac{\sin(60-a)}{\sin(a)}*\frac{\sin(90-a-x)}{\sin(a+x-30)}=\frac{1}{6}*\frac{8}{5}*\frac{30}{8}\)
\(n=7:\ \frac{\sin(30-a)}{\sin(30+a)}*\frac{\sin(60-a)}{\sin(a)}*\frac{\sin(90-a-x)}{\sin(a+x-30)}=\frac{1}{7}*\frac{9}{6}*\frac{42}{9}\)
\(n=8:\ \frac{\sin(30-a)}{\sin(30+a)}*\frac{\sin(60-a)}{\sin(a)}*\frac{\sin(90-a-x)}{\sin(a+x-30)}=\frac{1}{8}*\frac{10}{7}*\frac{56}{10}\)
\(n=9:\ \frac{\sin(30-a)}{\sin(30+a)}*\frac{\sin(60-a)}{\sin(a)}*\frac{\sin(90-a-x)}{\sin(a+x-30)}=\frac{1}{9}*\frac{11}{8}*\frac{72}{11}\)
根据这些算式, 电脑可以出来x, 手工可以出来x吗? |
|