数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 14417|回复: 100

强奇·哥德巴赫猜想

[复制链接]
发表于 2023-7-5 17:00 | 显示全部楼层 |阅读模式
对于不小于7的奇数Q,都至少存在1对素数P1<P2,使得Q=2*P1+P2
2023-07-05 16:53:03
7 = 2*2+3
9 = 2*2+5
11 = 2*2+7 = 2*3+5
13 = 2*3+7
15 = 2*2+11
17 = 2*2+13 = 2*3+11 = 2*5+7
19 = 2*3+13
21 = 2*2+17 = 2*5+11
23 = 2*2+19 = 2*3+17 = 2*5+13
25 = 2*3+19 = 2*7+11
27 = 2*2+23 = 2*5+17 = 2*7+13
29 = 2*3+23 = 2*5+19
31 = 2*7+17
33 = 2*2+29 = 2*5+23 = 2*7+19
35 = 2*2+31 = 2*3+29 = 2*11+13
37 = 2*3+31 = 2*7+23
39 = 2*5+29 = 2*11+17
41 = 2*2+37 = 2*5+31 = 2*11+19
43 = 2*3+37 = 2*7+29 = 2*13+17
45 = 2*2+41 = 2*7+31 = 2*11+23 = 2*13+19
47 = 2*2+43 = 2*3+41 = 2*5+37
49 = 2*3+43 = 2*13+23
51 = 2*2+47 = 2*5+41 = 2*7+37 = 2*11+29
53 = 2*3+47 = 2*5+43 = 2*11+31 = 2*17+19
55 = 2*7+41 = 2*13+29
57 = 2*2+53 = 2*5+47 = 2*7+43 = 2*13+31 = 2*17+23
59 = 2*3+53 = 2*11+37
61 = 2*7+47 = 2*19+23
63 = 2*2+59 = 2*5+53 = 2*11+41 = 2*13+37 = 2*17+29
65 = 2*2+61 = 2*3+59 = 2*11+43 = 2*17+31
67 = 2*3+61 = 2*7+53 = 2*13+41 = 2*19+29
69 = 2*5+59 = 2*11+47 = 2*13+43 = 2*19+31
71 = 2*2+67 = 2*5+61 = 2*17+37
73 = 2*3+67 = 2*7+59 = 2*13+47
75 = 2*2+71 = 2*7+61 = 2*11+53 = 2*17+41 = 2*19+37 = 2*23+29
77 = 2*2+73 = 2*3+71 = 2*5+67 = 2*17+43 = 2*23+31
79 = 2*3+73 = 2*13+53 = 2*19+41
81 = 2*5+71 = 2*7+67 = 2*11+59 = 2*17+47 = 2*19+43
83 = 2*2+79 = 2*5+73 = 2*11+61 = 2*23+37
85 = 2*3+79 = 2*7+71 = 2*13+59 = 2*19+47
87 = 2*2+83 = 2*7+73 = 2*13+61 = 2*17+53 = 2*23+41
89 = 2*3+83 = 2*5+79 = 2*11+67 = 2*23+43 = 2*29+31
91 = 2*19+53
93 = 2*2+89 = 2*5+83 = 2*7+79 = 2*11+71 = 2*13+67 = 2*17+59 = 2*23+47
95 = 2*3+89 = 2*11+73 = 2*17+61 = 2*29+37
97 = 2*7+83 = 2*13+71 = 2*19+59
99 = 2*5+89 = 2*13+73 = 2*19+61 = 2*23+53 = 2*29+41 = 2*31+37
用时 0.00000 秒
发表于 2023-7-5 21:42 | 显示全部楼层
一个反例也找不到。
它不是弱哥德巴赫猜想,也不强哥德巴赫猜想。
但是,它比强哥德巴赫猜想还强,证出了:强哥德巴赫猜想,等于弱哥德巴赫猜想以便证了。
而证出了:\(P_i+2P_j=2n+1\)成立,连强哥德巴赫猜想也一起证了。

点评

是的,比强猜,还强一点  发表于 2023-7-16 01:39
回复 支持 反对

使用道具 举报

发表于 2023-7-5 21:52 | 显示全部楼层
本帖最后由 白新岭 于 2023-7-5 21:54 编辑

证明<span class="MathJax_Preview" style="color: inherit;"></span><span class="MathJax_SVG" id="MathJax-Element-1-Frame" tabindex="0" data-mathml="<math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;><msub><mi>P</mi><mi>i</mi></msub><mo>+</mo><mn>2</mn><msub><mi>P</mi><mi>j</mi></msub></math>" role="presentation" style="font-size: 100%; display: inline-block; position: relative;"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="8.697ex" height="2.558ex" viewBox="0 -750.1 3744.4 1101.2" role="img" focusable="false" style="vertical-align: -0.815ex;" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><use xlink:href="http://www.mathchina.com/bbs/forum.php?mod=viewthread&tid=2048670&extra=#MJMATHI-50" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="http://www.mathchina.com/bbs/forum.php?mod=viewthread&tid=2048670&extra=#MJMATHI-69" x="908" y="-213"></use><use xlink:href="http://www.mathchina.com/bbs/forum.php?mod=viewthread&tid=2048670&extra=#MJMAIN-2B" x="1209" y="0"></use><use xlink:href="http://www.mathchina.com/bbs/forum.php?mod=viewthread&tid=2048670&extra=#MJMAIN-32" x="2209" y="0"></use><g transform="translate(2710,0)"><use xlink:href="http://www.mathchina.com/bbs/forum.php?mod=viewthread&tid=2048670&extra=#MJMATHI-50" x="0" y="0"></use><use transform="scale(0.707)" xlink:href="http://www.mathchina.com/bbs/forum.php?mod=viewthread&tid=2048670&extra=#MJMATHI-6A" x="908" y="-213"></use></g></g></svg><span class="MJX_Assistive_MathML" role="presentation"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>P</mi><mi>i</mi></msub><mo>+</mo><mn>2</mn><msub><mi>P</mi><mi>j</mi></msub></math></span></span><script type="math/tex" id="MathJax-Element-1">P_i+2P_j</script>=2N+1(N≥4)在素数集内有解
http://www.mathchina.com/bbs/for ... 0&fromuid=37263
(出处: 数学中国)
这个问题在21年10月就开始探讨了。
在25#有统一的求解组数公式:\(P_i+mP_j=2n+mod(m+1,2)\)
系数*\({2n}\over{m{ln}^2(2n)}\)
回复 支持 反对

使用道具 举报

发表于 2023-7-5 21:54 | 显示全部楼层
不知道出了啥问题,出现不是乱码的“乱码”
最后的链接正常。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-6 10:05 | 显示全部楼层
白新岭 发表于 2023-7-5 13:52
证明Pi+2PjP_i+2P_j=2N+1(N≥4)在素数集内有解
http://www.mathchina.com/bbs/forum.php?mod=viewthread& ...

这里的素数集,有所限制,Pj<Pi,并且有偶素数2加入运算。所以你的结果还需修正!

点评

或许吧!在我所分析的涉及素数问题,还真没有,那个限制条件;至于素数2那倒不是,素数2可以被任何正整数替换,用1替换,就是哥德巴赫猜想了。  发表于 2023-7-6 22:01
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-13 09:11 | 显示全部楼层
这世界,真精彩。
一人二猫,六目相对。
猫在思考人生,人在筹措猫粮。
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-7-14 10:53 | 显示全部楼层
接1#,谁有能力证明呢???
2023-07-14 10:55:16
··· ···
101 = 2*2+97 = 2*11+79 = 2*17+67 = 2*29+43
103 = 2*3+97 = 2*7+89 = 2*31+41
105 = 2*2+101 = 2*11+83 = 2*13+79 = 2*17+71 = 2*19+67 = 2*23+59 = 2*29+47 = 2*31+43
107 = 2*2+103 = 2*3+101 = 2*5+97 = 2*17+73 = 2*23+61
109 = 2*3+103 = 2*13+83 = 2*19+71 = 2*31+47
111 = 2*2+107 = 2*5+101 = 2*7+97 = 2*11+89 = 2*19+73 = 2*29+53
113 = 2*2+109 = 2*3+107 = 2*5+103 = 2*17+79 = 2*23+67
115 = 2*3+109 = 2*7+101 = 2*13+89 = 2*31+53 = 2*37+41
117 = 2*2+113 = 2*5+107 = 2*7+103 = 2*17+83 = 2*19+79 = 2*23+71 = 2*29+59 = 2*37+43
119 = 2*3+113 = 2*5+109 = 2*11+97 = 2*23+73 = 2*29+61
121 = 2*7+107 = 2*19+83 = 2*31+59 = 2*37+47
123 = 2*5+113 = 2*7+109 = 2*11+101 = 2*13+97 = 2*17+89 = 2*31+61
125 = 2*11+103 = 2*23+79 = 2*29+67 = 2*41+43
127 = 2*7+113 = 2*13+101 = 2*19+89 = 2*37+53
129 = 2*11+107 = 2*13+103 = 2*23+83 = 2*29+71 = 2*31+67 = 2*41+47
131 = 2*2+127 = 2*11+109 = 2*17+97 = 2*29+73
133 = 2*3+127 = 2*13+107 = 2*31+71 = 2*37+59 = 2*43+47
135 = 2*2+131 = 2*11+113 = 2*13+109 = 2*17+101 = 2*19+97 = 2*23+89 = 2*31+73 = 2*37+61 = 2*41+53
137 = 2*3+131 = 2*5+127 = 2*17+103 = 2*29+79
139 = 2*13+113 = 2*19+101 = 2*43+53
141 = 2*2+137 = 2*5+131 = 2*7+127 = 2*17+107 = 2*19+103 = 2*29+83 = 2*31+79 = 2*37+67 = 2*41+59
143 = 2*2+139 = 2*3+137 = 2*17+109 = 2*23+97 = 2*41+61
145 = 2*3+139 = 2*7+131 = 2*19+107 = 2*31+83 = 2*37+71 = 2*43+59
147 = 2*5+137 = 2*17+113 = 2*19+109 = 2*23+101 = 2*29+89 = 2*37+73 = 2*43+61 = 2*47+53
149 = 2*5+139 = 2*11+127 = 2*23+103 = 2*41+67
151 = 2*7+137 = 2*19+113 = 2*31+89
153 = 2*2+149 = 2*7+139 = 2*11+131 = 2*13+127 = 2*23+107 = 2*37+79 = 2*41+71 = 2*43+67 = 2*47+59
155 = 2*2+151 = 2*3+149 = 2*23+109 = 2*29+97 = 2*41+73 = 2*47+61
157 = 2*3+151 = 2*13+131 = 2*37+83 = 2*43+71
159 = 2*5+149 = 2*11+137 = 2*23+113 = 2*29+101 = 2*31+97 = 2*43+73
161 = 2*2+157 = 2*5+151 = 2*11+139 = 2*17+127 = 2*29+103 = 2*41+79 = 2*47+67
163 = 2*3+157 = 2*7+149 = 2*13+137 = 2*31+101 = 2*37+89
165 = 2*7+151 = 2*13+139 = 2*17+131 = 2*19+127 = 2*29+107 = 2*31+103 = 2*41+83 = 2*43+79 = 2*47+71 = 2*53+59
167 = 2*2+163 = 2*5+157 = 2*29+109 = 2*47+73 = 2*53+61
169 = 2*3+163 = 2*19+131 = 2*31+107 = 2*43+83
171 = 2*2+167 = 2*7+157 = 2*11+149 = 2*17+137 = 2*29+113 = 2*31+109 = 2*37+97 = 2*41+89
173 = 2*3+167 = 2*5+163 = 2*11+151 = 2*17+139 = 2*23+127 = 2*47+79 = 2*53+67
175 = 2*13+149 = 2*19+137 = 2*31+113 = 2*37+101 = 2*43+89
177 = 2*2+173 = 2*5+167 = 2*7+163 = 2*13+151 = 2*19+139 = 2*23+131 = 2*37+103 = 2*47+83 = 2*53+71
179 = 2*3+173 = 2*11+157 = 2*41+97 = 2*53+73 = 2*59+61
181 = 2*7+167 = 2*37+107
183 = 2*2+179 = 2*5+173 = 2*13+157 = 2*17+149 = 2*23+137 = 2*37+109 = 2*41+101 = 2*43+97 = 2*47+89
185 = 2*2+181 = 2*3+179 = 2*11+163 = 2*17+151 = 2*23+139 = 2*29+127 = 2*41+103 = 2*53+79 = 2*59+67
187 = 2*3+181 = 2*7+173 = 2*19+149 = 2*37+113 = 2*43+101
189 = 2*5+179 = 2*11+167 = 2*13+163 = 2*19+151 = 2*29+131 = 2*31+127 = 2*41+107 = 2*43+103 = 2*53+83 = 2*59+71 = 2*61+67
191 = 2*5+181 = 2*17+157 = 2*41+109 = 2*47+97 = 2*59+73
193 = 2*7+179 = 2*13+167 = 2*31+131 = 2*43+107 = 2*61+71
195 = 2*2+191 = 2*7+181 = 2*11+173 = 2*19+157 = 2*23+149 = 2*29+137 = 2*41+113 = 2*43+109 = 2*47+101 = 2*53+89 = 2*61+73
197 = 2*2+193 = 2*3+191 = 2*17+163 = 2*23+151 = 2*29+139 = 2*47+103 = 2*59+79
199 = 2*3+193 = 2*13+173 = 2*31+137 = 2*43+113
用时 0.01560 秒
回复 支持 反对

使用道具 举报

发表于 2023-7-15 21:49 | 显示全部楼层
证明了的话,给予多少奖金啊。

点评

你不是证明了哥德巴赫猜想吗?奖金拿得手软了吧!怎么还惦记这里的奖金???  发表于 2023-7-15 22:05
回复 支持 反对

使用道具 举报

发表于 2023-7-15 21:50 | 显示全部楼层
lusishun 发表于 2023-7-15 13:49
证明了的话,给予多少奖金啊。

设立一奖项,可能启发大家的兴趣

点评

是“毛”,连“分”也不是,真有点可怜。说笑了,都不要当真。  发表于 2023-7-15 22:51
你要证的可考虑给你250大毛。  发表于 2023-7-15 22:00
回复 支持 反对

使用道具 举报

发表于 2023-7-15 23:51 | 显示全部楼层
lusishun 发表于 2023-7-15 13:50
设立一奖项,可能启发大家的兴趣

敢来真的吗?
250大毛,250张100元,即二万五千元 ,我认为太多。
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-24 03:33 , Processed in 0.085830 second(s), 17 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表