数学中国

用户名  找回密码
 注册
帖子
热搜: 活动 交友 discuz
查看: 3615|回复: 2

今年奥数几何题

[复制链接]
发表于 2023-7-17 23:02 | 显示全部楼层 |阅读模式
本帖最后由 denglongshan 于 2023-7-17 15:23 编辑

设ABC是一个正三角形,点A,BC在三角形ABC的内部且满足BA1=A1C,CB1=B1A,AC1=C1B,及
BA1C+CB1A+AC1B=480度,
设直线BC1B1C交于点A2,直线C1AA1C交于点B2,直线A1BB1A交于点C2
证明:若三角形A1B1C1的三边长度两两不等,则三角形AA1A2BB1B2CC1C2的外接圆都经过两个公共点.

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
发表于 2023-7-19 18:41 | 显示全部楼层
本帖最后由 天山草 于 2023-7-20 10:27 编辑

程序代码:
  1. Clear["Global`*"];(*u=\[ExponentialE]^(2\[ImaginaryI]\[Theta]);v=\[ExponentialE]^(2\[ImaginaryI]\[Beta]);*)
  2. \!\(\*OverscriptBox[\(b\), \(_\)]\) = b = 0; \!\(\*OverscriptBox[\(c\), \(_\)]\) = c = 1; a = 1/2 + I Sqrt[3]/2;
  3. \!\(\*OverscriptBox[\(a\), \(_\)]\) = 1/a;
  4. (*u=\[ExponentialE]^(2\[ImaginaryI]\[Theta]);v=\[ExponentialE]^(2\[ImaginaryI]\[Beta])*)
  5. \[Angle]A1BC = \[Theta]; \[Angle]C1BA = \[Beta]; \[Angle]B1CA = \[Gamma]; \[Angle]BA1C = \[Pi] - 2 \[Theta];
  6. \[Angle]AB1C = \[Pi] - 2 \[Gamma]; \[Angle]AC1B = \[Pi] - 2 \[Beta];
  7. (*解 Solve[{\[Angle]BA1C+ \[Angle]AB1C+\[Angle]AC1B\[Equal](480\[Pi])/180},{\[Gamma]}]得到:*)
  8. \[Gamma] = \[Pi]/6 - \[Beta] - \[Theta];(*现在只剩二个变量 \[Beta] 和 \[Theta]*)
  9. kBA1 = u; kBC1 = E^(2 I (\[Pi]/3))/v; kCB1 = E^(2 I ((2 \[Pi])/3 + \[Gamma])); kCB1 = E^(2 I ((5 \[Pi])/6))/(u v);
  10. mBC = (b + c)/2; \!\(\*OverscriptBox[\(mBC\), \(_\)]\) = (\!\(\*OverscriptBox[\(b\), \(_\)]\) + \!\(\*OverscriptBox[\(c\), \(_\)]\))/2; mAB = (a + b)/2; \!\(\*OverscriptBox[\(mAB\), \(_\)]\) = (\!\(\*OverscriptBox[\(a\), \(_\)]\) + \!\(\*OverscriptBox[\(b\), \(_\)]\))/2; mAC = (a + c)/2;
  11. \!\(\*OverscriptBox[\(mAC\), \(_\)]\) = (\!\(\*OverscriptBox[\(a\), \(_\)]\) + \!\(\*OverscriptBox[\(c\), \(_\)]\))/2;
  12. K[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)); (*复斜率定义*)
  13. (*过A1点、复斜率等于k1的直线,与过A2点、复斜率等于k2的直线的交点:*)
  14. Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\)) - k1 (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[k1_, a1_, k2_, a2_] := -((a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\) - (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));
  15. a1 = Simplify@Jd[kBA1, b, -K[b, c], mBC]; \!\(\*OverscriptBox[\(a1\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[kBA1, b, -K[b, c], mBC]; Print["A1 = ", a1];
  16. b1 = Simplify@Jd[kCB1, c, -K[a, c], mAC]; \!\(\*OverscriptBox[\(b1\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[kCB1, c, -K[a, c], mAC]; Print["B1 = ", b1];
  17. c1 = Simplify@Jd[kBC1, b, -K[a, b], mAB]; \!\(\*OverscriptBox[\(c1\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[kBC1, b, -K[a, b], mAB]; Print["C1 = ", c1];
  18. a2 = Simplify@Jd[K[b, c1], c1, K[c, b1], b1]; \!\(\*OverscriptBox[\(a2\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[K[b, c1], c1, K[c, b1], b1];Print["A2 = ", a2];
  19. c2 = Simplify@Jd[K[b, a1], a1, K[a, b1], b1]; \!\(\*OverscriptBox[\(c2\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[K[b, a1], a1, K[a, b1], b1];Print["C2 = ", c2];
  20. b2 = Simplify@Jd[K[a, c1], c1, K[c, a1], a1]; \!\(\*OverscriptBox[\(b2\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[K[a, c1], c1, K[c, a1], a1];Print["B2 = ", b2];
  21. Waixin[a_, b_, c_] := (a \!\(\*OverscriptBox[\(a\), \(_\)]\) (b - c) + b \!\(\*OverscriptBox[\(b\), \(_\)]\) (c - a) + c \!\(\*OverscriptBox[\(c\), \(_\)]\) (a - b) )/( \!\(\*OverscriptBox[\(a\), \(_\)]\) (b - c) + \!\(\*OverscriptBox[\(b\), \(_\)]\) (c - a) + \!\(\*OverscriptBox[\(c\), \(_\)]\) (a - b));
  22. \!\(\*OverscriptBox[\(Waixin\), \(_\)]\)[a_, b_, c_] := -((a \!\(\*OverscriptBox[\(a\), \(_\)]\) (\!\(\*OverscriptBox[\(b\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\)) + b \!\(\*OverscriptBox[\(b\), \(_\)]\) (\!\(\*OverscriptBox[\(c\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\)) + c \!\(\*OverscriptBox[\(c\), \(_\)]\) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)) )/( \!\(\*OverscriptBox[\(a\), \(_\)]\) (b - c) + \!\(\*OverscriptBox[\(b\), \(_\)]\) (c - a) + \!\(\*OverscriptBox[\(c\), \(_\)]\) (a - b)));
  23. o1 = Simplify@Waixin[a, a1, a2]; \!\(\*OverscriptBox[\(o1\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Waixin\), \(_\)]\)[a, a1, a2];
  24. o2 = Simplify@Waixin[b, b1, b2]; \!\(\*OverscriptBox[\(o2\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Waixin\), \(_\)]\)[b, b1, b2];
  25. o3 = Simplify@Waixin[c, c1, c2]; \!\(\*OverscriptBox[\(o3\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Waixin\), \(_\)]\)[c, c1, c2];
  26. Print["O1 = ", o1]; Print["O2 = ", o2]; Print["O3 = ", o3];
  27. XiangjiaoxuanLianxin[o1_, a_, o2_, b_] := (a \!\(\*OverscriptBox[\(a\), \(_\)]\) - b \!\(\*OverscriptBox[\(b\), \(_\)]\) + \!\(\*OverscriptBox[\(b\), \(_\)]\) o2 + b \!\(\*OverscriptBox[\(o2\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\) o1 - a \!\(\*OverscriptBox[\(o1\), \(_\)]\) + \!\(\*OverscriptBox[\(o2\), \(_\)]\) o1 - o2 \!\(\*OverscriptBox[\(o1\), \(_\)]\))/(2 (\!\(\*OverscriptBox[\(o2\), \(_\)]\) - \!\(\*OverscriptBox[\(o1\), \(_\)]\)));
  28. \!\(\*OverscriptBox[\(XiangjiaoxuanLianxin\), \(_\)]\)[o1_, a_,  o2_,   b_] := (a \!\(\*OverscriptBox[\(a\), \(_\)]\) - b \!\(\*OverscriptBox[\(b\), \(_\)]\) + \!\(\*OverscriptBox[\(b\), \(_\)]\) o2 + b \!\(\*OverscriptBox[\(o2\), \(_\)]\) - \!\(\*OverscriptBox[\(a\), \(_\)]\) o1 - a \!\(\*OverscriptBox[\(o1\), \(_\)]\) + o2 \!\(\*OverscriptBox[\(o1\), \(_\)]\) - \!\(\*OverscriptBox[\(o2\), \(_\)]\) o1)/(2 (o2 - o1));
  29. (*两圆连心线与公共弦的交点P,O1、O2是两圆圆心,A是O1上任一点,B是O2上任一点。如果两圆相切的,所求交点即是切点*)
  30. m = Simplify@XiangjiaoxuanLianxin[o1, a, o2, b];
  31. m1 = Simplify@XiangjiaoxuanLianxin[o1, a, o3, c];
  32. SimpleFuc :=
  33.   Factor[#, Extension -> Sqrt[3]] &@(FactorTerms[Numerator[#]]/
  34.       FactorTerms[Denominator[#]]) &@Factor[#, Extension -> Sqrt[3]] &;
  35. Print["M = ", SimpleFuc[m]];
  36. Print["M1 = ", SimpleFuc[m1]];
  37. Print["由于 M 和 M1 点的坐标相同,即圆O1、圆O2的根轴中心与圆O1、圆O3的根轴中心重合,因此三个圆只有两个公共交点。"];
复制代码
回复 支持 1 反对 0

使用道具 举报

发表于 2023-7-19 09:20 | 显示全部楼层
本帖最后由 天山草 于 2023-7-19 17:29 编辑



说明:
① M 是圆 O1、圆O2 连心线与公共弦的交点, M1 是圆 O1、圆O3 连心线与公共弦的交点。如果 M 与 M1 重合,则三个圆 O1、O2、O3 交于两个点。
② 程序中倒数第2、3、4 行化简复数表达式的方法,是 creasson 大侠提供的。在此表示感谢!

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?注册

x
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

LaTEX预览输入 教程 符号库 加行内标签 加行间标签 
对应的 LaTEX 效果:

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-7-13 20:48 , Processed in 0.114906 second(s), 23 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表
\frac{\square}{\square}\sqrt{\square}\square_{\baguet}^{\baguet}\overarc{\square}\ \dot{\baguet}\left(\square\right)\binom{\square}{\square}\begin{cases}\square\\\square\end{cases}\ \begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\to\Rightarrow\mapsto\alpha\ \theta\ \pi\times\div\pm\because\angle\ \infty
\frac{\square}{\square}\sqrt{\square}\sqrt[\baguet]{\square}\square_{\baguet}\square^{\baguet}\square_{\baguet}^{\baguet}\sum_{\baguet}^{\baguet}\prod_{\baguet}^{\baguet}\coprod_{\baguet}^{\baguet}\int_{\baguet}^{\baguet}\lim_{\baguet}\lim_{\baguet}^{\baguet}\bigcup_{\baguet}^{\baguet}\bigcap_{\baguet}^{\baguet}\bigwedge_{\baguet}^{\baguet}\bigvee_{\baguet}^{\baguet}
\underline{\square}\overline{\square}\overrightarrow{\square}\overleftarrow{\square}\overleftrightarrow{\square}\underrightarrow{\square}\underleftarrow{\square}\underleftrightarrow{\square}\dot{\baguet}\hat{\baguet}\vec{\baguet}\tilde{\baguet}
\left(\square\right)\left[\square\right]\left\{\square\right\}\left|\square\right|\left\langle\square\right\rangle\left\lVert\square\right\rVert\left\lfloor\square\right\rfloor\left\lceil\square\right\rceil\binom{\square}{\square}\boxed{\square}
\begin{cases}\square\\\square\end{cases}\begin{matrix}\square&\square\\\square&\square\end{matrix}\begin{pmatrix}\square&\square\\\square&\square\end{pmatrix}\begin{bmatrix}\square&\square\\\square&\square\end{bmatrix}\begin{Bmatrix}\square&\square\\\square&\square\end{Bmatrix}\begin{vmatrix}\square&\square\\\square&\square\end{vmatrix}\begin{Vmatrix}\square&\square\\\square&\square\end{Vmatrix}\begin{array}{l|l}\square&\square\\\hline\square&\square\end{array}
\to\gets\leftrightarrow\nearrow\searrow\downarrow\uparrow\updownarrow\swarrow\nwarrow\Leftarrow\Rightarrow\Leftrightarrow\rightharpoonup\rightharpoondown\impliedby\implies\Longleftrightarrow\leftharpoonup\leftharpoondown\longleftarrow\longrightarrow\longleftrightarrow\Uparrow\Downarrow\Updownarrow\hookleftarrow\hookrightarrow\mapsto
\alpha\beta\gamma\Gamma\delta\Delta\epsilon\varepsilon\zeta\eta\theta\Theta\iota\kappa\varkappa\lambda\Lambda\mu\nu\xi\Xi\pi\Pi\varpi\rho\varrho\sigma\Sigma\tau\upsilon\Upsilon\phi\Phi\varphi\chi\psi\Psi\omega\Omega\digamma\vartheta\varsigma\mathbb{C}\mathbb{H}\mathbb{N}\mathbb{P}\mathbb{Q}\mathbb{R}\mathbb{Z}\Re\Im\aleph\partial\nabla
\times\cdot\ast\div\pm\mp\circ\backslash\oplus\ominus\otimes\odot\bullet\varnothing\neq\equiv\not\equiv\sim\approx\simeq\cong\geq\leq\ll\gg\succ\prec\in\ni\cup\cap\subset\supset\not\subset\not\supset\notin\not\ni\subseteq\supseteq\nsubseteq\nsupseteq\sqsubset\sqsupset\sqsubseteq\sqsupseteq\sqcap\sqcup\wedge\vee\neg\forall\exists\nexists\uplus\bigsqcup\bigodot\bigotimes\bigoplus\biguplus\bigcap\bigcup\bigvee\bigwedge
\because\therefore\angle\parallel\perp\top\nparallel\measuredangle\sphericalangle\diamond\diamondsuit\doteq\propto\infty\bowtie\square\smile\frown\bigtriangledown\triangle\triangleleft\triangleright\bigcirc \wr\amalg\models\preceq\mid\nmid\vdash\dashv\nless\ngtr\ldots\cdots\vdots\ddots\surd\ell\flat\sharp\natural\wp\clubsuit\heartsuit\spadesuit\oint\lfloor\rfloor\lceil\rceil\lbrace\rbrace\lbrack\rbrack\vert\hbar\aleph\dagger\ddagger

MathQuill输入:

Latex代码输入: