数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2618|回复: 7

勾股数组研究

[复制链接]
发表于 2023-8-18 21:17 | 显示全部楼层 |阅读模式
本帖最后由 朱明君 于 2023-8-19 14:26 编辑

\(朱火华勾股数组通解公式\)
\(设\left( \frac{x}{2}\right)^2=mn{,}其中x为\ge4的偶数,且m>n{,}\ mn均为正整数,\)
\(x<\left( m-n\right){,}\ x为勾=a,m-n为股=b{,}\ \ m+n为弦=c{,}\)
\(x>\left( m-n\right){,}\ x为股=b{,}\ \ m-n为勾=a{,}\ \ m+n为弦=c{,}\)
\(则a^2+b^2=c^2\)
\(这个公式是我研究出来的,解决了古今中外数学家勾股不分,a b不分的问题,\)
\(勾股定理的定义是短边为勾,长边为股,斜边为弦。\)


\(设(x/2)^2=mn,其中x为大于等于4的偶数,且m﹥n,mn均为正整数,\)
\(则x^2+(m-n)^2=(m+n)^2\)

\(设x=mn,其中x为大于等于3的奇数,且m>n,mn均为正整数,\)
\(则x^2十[(m^2-n^2)/2]^2=[(m^2+n^2)/2]^2\)

\(设x=m+n,其中x为大于等于2的正整数,且mn均为正整数,\)
\(则[m(x+n)]^2+(2xn)^2=(x^2+n^2)^2\)

\(设x=m+n,其中x为大于等于3的正整数,且m>n,mn均为正整数,\)
\(  则[x(m-n)]^2+(2mn)^2=(m^2+n^2)^2\)      


\(1{,}设(x/2)^2=mn{,}其中x为\ge4的偶数,\)
\(则x^2+(m-n)^2=(m+n)^2\)
\(若m n一奇一偶没有大于1的公倍数\),
\(则x^2+(m-n)^2=(m+n)^2为勾股数本原解数组。\)
\(计算n的方法,是由分解(x/2)^2得到,\)
\((x/2)^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}\ 其中F为质因数,\)
\(取这些因数重组小于(x/2)的数积为n。(x/2)^2/n=m。\)
\(详解:根据(x/2)^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}首先计算出1和全部质因数各自从\)
\(1到n次方的积数,去掉大于等于(x/2)的积数后重组,(同底数的数不能重组)\)
\(再去掉大于等于(x/2)的积数,余下的数为n。\)
\(实例:计算x=60的全部勾股数,\)
\((60/2)^2=900=1\times2^2\times3^2\times5^2{,}\)
\(1^1=1{,}\ \ 2^1=2{,}\ \ 3^1=3{,}\ \ 5^1=5{,}\)
\(2^2=4{,}\ \ 3^2=9{,}\ \ 5^2=25{,}\)
\(2\times3=6{,}\ 2\times5=10{,}\ \ 3\times4=12{,}\ \ 3\times5=15{,}\ \ 2\times9=18{,}\ \ 4\times5=20{,}\)
\(即n小于30的数有1,2,3,4,5,6,9,10,12,15,18,25。(13个)\)
\(根据公式(X/2)^2/n=m。\)
\(所以\)
\(n=1,     m=900。   n=2,m=450。   n=3,  m=300。   n=4, m=225。\)
\(n=5,  m=180。   n=6,m=150。   n=9,  m=100。   n=10,m=90。\)
\(n=12,m=75。     n=15, m=60。     n=18,m=50。     n=20,m=45。\)
\(n=25,m=36。\)
\(代入公式得:\)
\(60^2+(900-1)^2=(900+1)^2(本原解)\)
\(60^2+(450-2)^2=(450+2)^2\)
\(60^2+(300-3)^2=(300+3)^2\)
\(60^2+(225-4)^2=(225+4)^2(本原解)\)
\(60^2+(180-5)^2=(180+5)^2\)
\(60^2+(150-6)^2=(150+6)^2\)
\(60^2+(100-9)^2=(100+9)^2(本原解)\)
\(60^2+(90-10)^2=(90+10)^2\)
\(60^2+(75-12)^2=(75+12)^2\)
\(60^2+(60-15)^2=(60+15)^2\)
\(60^2+(50-18)^2=(50+18)^2\)
\(60^2+(45-20)^2=(45+20)^2\)
\(60^2+(36-25)^2=(36+25)^2(本原解)\)
\(实例:\)
\((x/2)^2=mn,代入公式得(勾,股,弦)\)
\((4/2)^2=4\times1,(3,4,5)(本原解)\)
\((6/2)^2=9\times1,(8,6,10)(本原解)\)
\((8/2)^2=16\times1,(15,8,17)(本原解)\)
\((8/2)^2=8\times2,(6,8,10)\)                  
\((10/2)^2=25\times1,(24,10,26)(本原解)\)   
\((12/2)^2=36\times1,(35,12,37)(本原解)\)
\((12/2)^2=18\times2,(16,12,20)\)
\((12/2)^2=12\times3,(9,12,15)\)
\((12/2)^2=9\times4,(5,12,13)(本原解)\)
\((14/2)^2=49\times1,(48,14,50)\)
\(\cdots\cdots。\)

\(2{,}设x^2=mn,(其中X为\ge3的奇数){,}且m>n{,}\ m{,}n均为正整数,\)
\(则x^2+[(m-n)/2]^2=[(m+n)/2]^2。\)
\(若mn没有大于1的公约数,\)
\(则x^2+[(m-n)/2]^2=[(m+n)/2]^2为勾股数本愿解数组。\)
\(计算n的方法,是由分解X^2得到,\)
\(X^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}(其中F为质因数)\)
\(取这些因数重组小于X的数积为n{,}(X^2)/n=m。\)
\(详解:根据X^2=1\times F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn},首先计算出1和全部质因数各自从1到n次方的积数,\)
\(去掉大于等于X的积数后重组,(同底数的数不能重组)再去掉大于等于X的积数,余下的数为n。\)
\(实例:计算X=15时全部勾股数\)
\(X=15{,}\ \ 15^2=1\times3^2\times5^2{,}\)
\(1^1=1{,}\ \ 3^1=3{,}\ \ 5^1=5{,}\)
\(3^2=9{,}\ \ 5^2=25{,}\)
\(即n小于15的数有1,3,5,9。(4个)\)
\(根据公式X^2/n=m。\)
\(所以n=1{,}\ \ m=225。n=3,m=75。n=5,m=45。n=9,m=25。\)
\(代入公式得:\)
\(15^2+[(225-1)/2]^2=[(225+1)/2]^2(本原解)\)
\(15^2+[(75-3)/2]^2=(75+3)/2]^2\)
\(15^2+[(45-5)/2]^2=[(45+5)/2]^2\)
\(15^2+[(25-9)/2]^2=[(25+9)/2]^2(本原解)\)
\(实例:\)
\(x^2=mn,代入公式得(勾,股,弦)\)
\(3^2=9\times1,(3,4,5)(本原解)\)
\(5^2=25\times1,(5,12,13)(本原解)\)
\(7^2=49\times1,(7,24,25)(本原解)\)              
\(9^2=81\times1,(9,40,42)(本原解)\)     
\(9^2=27\times3,\left( 9,12,15\right)\)  
\(11^2=121\times1,(11,60,61)(本原解)\)      
\(13^2=169\times1,(13,84,85)(本原解)\)         
\(15^2=225\times1,(15,112,113)(本原解)\)
\(15^2=75\times3,(15,36,39)\)
\(15^2=45\times5,(15,20,25)\)
\(15^2=25\times9,(15,8,17)(本原解)\)
\(\cdots\cdots。\)

\(3,X为勾全部解的解数公式\)
\(计算全部解的解数方法,是由分解X质因数中的指数得到,与底数无关。\)
\(X=F_1^{n1}\times F_2^{n2}\times\cdots\times F_n^{nn}{,}(其中X为\ge3的正整数,F为质因数,n为指数)\)
\(设X为勾全部解的解数为L,指数的对应数为2n+1。\)
\(则X(奇数),L=[(2n_1+1)(2n_2+1)\dots(2n_n+1)-1]/2\)
\(则X(偶数),L=[(2n_1+1-2)(2n_2+1)\dots(2n_n+1)-1]/2\)
\(实例X=15{,}\ \ 15=3^1\times5^1{,}\)
\(代入公式得[(2×1+1)×(2×1+1)-1]/2=4组。\)
\(实例:X=60{,}\ \ 60=2^2\times3^1\times5^1{,}\)
\(代入公式得  [(2×2+1-2)×(2×1+1)×(2×1+1)-1]/2=13组,\)

\(4,设x=m+n,其中x为\ge2的正整数,且mn均为正整数,\)
\(则[m(x+n)]^2+(2xn)^2=(x^2+n^2)^2,\)
\(若(x+n)是奇数,且与m互质,\)
\(则[m(x+n)]^2+(2xn)^2=(x^2+n^2)^2为勾股数本原解数组。\)
\(实例:\)
\(x=m+n,代入公式得(勾,股,弦)\)
\(2=1+1,   (3, 4,5)     (本原解)\)
\(3=1+2,   (5,12,13)    (本原解)\)
\(3=2+1,   (8,6,10)    \)
\(4=1+3,   (7,24,25)    (本原解)\)
\(4=2+2,   (12,16,20)\)
\(4=3+1,   (15,8,17)     (本原解)\)
\(5=1+4,   (9,40,41)    (本原解)\)
\(5=2+3,   (16,30,34)\)
\(5=3+2,   (21,20,29)    (本原解)\)
\(5=4+1,   (24,10,26)\)
\(6=1+5,   (11,60,61)    (本原解)\)
\(6=2+4,   (20,48,52)  \)
\(6=3+3,   (27,36,45)   \)
\(6=4+2,   (32,24,40)\)
\(6=5+1,   (35,12,37)    (本原解)\)  
\(\cdots\cdots。\)

\(5,设x=m+n,其中x为大于等于3的正整数,且m<n<x, x m n均为正整数,\)
\(则[x(n-m)]^2+(2mn)^2=(m^2+n^2)^2\)
\(若x是奇数,且m与n互质,\)
\(则[x(n-m)]^2+(2mn)^2=(m^2+n^2)^2为勾股数本原解数组。\)
\(实例:\)
\( x=m+n,代入公式得(勾,股,弦)\)
\(3=1+2,   (3, 4,  5)    (本原解) \)
\(4=1+3,   (8,6,10)\)
\(5=1+4,   (15,8,17)    (本原解)\)
\(5=2+3,   (5,12,13)    (本原解)\)
\(6=1+5,   (24,10,26)\)
\(6=2+4,   (12,16,20)\)
\(7=1+6,   (35,12,37)   (本原解)\)
\(7=2+5,   (21,20,29)    (本原解)\)
\(7=3+4,   (7,24,25)     (本原解)\)
\(8=1+7,   (48,14,50)     \)
\(8=2+6,   (32,24,40)\)
\(8=3+5,   (16,30,34)\)
\(\cdots\cdots。\)


\(设x为任意正整数,\)
\(则x^2+(x+1)^2+[x(x+1)]^2=[x(x+1)+1]^2。\)
  \(x=1,\ \ \ 1^2+2^2+2^2=3^2,\)
  \(x=2,\ \ \ 2^2+3^2+6^2=7^2,\)
  \(x=3,\ \ \ 3^2+4^2+12^2=13^2,\)
  \(x=4,\ \ \ 4^2+5^2+20^2=21^2\)
  \(\cdots\cdots。\)


\(设x为大于等于2的正整数,n为任意正整数,x又为公式中的前项个数,\)
\(则x^n+x^n+\cdots+x^n=x^{(n+1)}){,}\ \ \ \ \ \ \ 简化公式:x(x^n)=x^{(n+1)}\)
  \(x=2,\ \ \ 2^n+2^n=2^{(n+1),},\)
  \(x=3,\ \ \ 3^n+3^n+3^n=3^{(n+1)},\)
  \(x=4,\ \ \ 4^n+4^n+4^n+4^n=4^{(n+1),},\)
  \(\cdots\cdots。\)




\(设a^n+b^n=z{,}\ \ az=x{,}\ \ bz=y{,}\)
\(其中abn均为任意正整数,\)
\(则x^n+y^n=z^{n+1},\)
\(\left\{ a\left( a^n+b^n\right)\right\}^n+\left\{ b\left( a^n+b^n\right)\right\}^n=\left( a^n+b^n\right)^{n+1}\),
\(其中a,b,n为正整数\)



\(求不定方程x^2+y^n=z^2的正整数解\)
\(设[y^{\left( n-1\right)}-y]/2=x,[y^{\left( n-1\right)}+y]/2=z,\)
\(   其中y为大于等于2的正整数,n为大于等于4的正整数,\)
\(则x^2+y^n=z^2,\)


\(设xn均为任意正整数,\)
\(则\left( 2^n\right)^x十\left( 2^n\right)^x=2^{\left( nx十1\right)}\)
\(则\left( 2^x\right)^n十\left( 2^x\right)^n=2^{\left( nx十1\right)}\)
\(则\left( 2^n\right)^x十\left( 2^x\right)^n=2^{\left( nx十1\right)}\)



\(设n为大于等于2的正整数,\)
\(则\left( 2^n\right)^{n一2}十\left( 2^{n一2}\right)^n=\left( 2^{n一1}\right)^{n一1}\)



\(设n为任意奇数,\)
\(则2^n+2^n=\left\{ 2^{\left( n+1\right)\div2}\right\}^{^2}{,}\)
  \(2^1十2^1=2^2,\)
  \(2^3十2^3=4^2,\)
  \(2^5十2^5=8^2,\)
  \(2^7十2^7=16^2,\)
  \(......。\)


\(设n为大于等于0的整数{,}\)
\(则\left( 2^n\right)^{n+2}+\left( 2^n\right)^{n+2}=\left( 2\times\left( 2^n\right)\right)^{n+1}\)
  \(1^2+1^2=2^1{,}\)
  \(2^3+2^3=4^2{,}\)
  \(4^4+4^4=8^3{,}\)
  \(8^5+8^5=16^4{,}\)
  \(16^6+16^6=32^5{,}\)
  \(\cdots\cdots\)


\(\left( (b^2-a^2\right)^2+\left( 2ab\right)^2=c^4,\)其中\(a\)为勾,\(b\)为股,\(c\)为弦,且\(a\)﹤b﹤\(c\)。



\((ac)^2+\left( bc\right)^2=c^4,其中a为勾,b为股,c为弦。\)




\(设x=b+2(a+c),y=a+2(b+c),z=c+2(a+b+c),其中a为勾,b为股,c为弦,\)
\(则x^2+y^2=z^2,\)


\(设x为任意正整数,则x^2+(2x)^2+( 2x)^2=(x+2x)^2,\)


\(兔子数列中的勾股数\)
\(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610,\)\(\cdots\cdots。\)
\(①,设兔子数列中的任意四个连续的兔子数:\)
\(第一个为a,第二个为b,第三个为c,第四个为d,  \)
\(则(ad)^2+(2bc)^2=(b^2+c^2)^2\)
\(②,设兔子数列中的任意3个连续的兔子数,\)
\(第1个为a,笫2个为b,第3个为c,\)
\(则[a(b+c)]^2+(2bc)^2=(b^2+c^2)^2,\)


\(巳知2的n次方的n为大于等于1的正整数,\)
\(求满足方程(3x+1)/2^n=Z的所有x和Z的奇数解。\)
\(①,当n是奇数时,\)
\(x(奇数)=2^{\left( n+1\right)}×N+2^n+\left\{ [2^{\left( n+1\right)}-1]/3\right\}\)
\(z(奇数)=6N+5,\)
\(其中N为≥0的整数。\)
\(②,当n是偶数时,\)
\(x(奇数)=2^{\left( n+1\right)}\times N+[(2^n-1)/3],\)
\(z(奇数)=6N+1,\)
\(其中n为正整数,N为≥0的整数。\)


\(3=\sqrt{1+\left( n_1+1\right)\sqrt{1+\left( n_2+1\right)...\sqrt{1+\left( n_n+1\right)\left( n_n+3\right)}}}\)
\(其中n_1=1,n_2=2,n_3=3,...n_n=n。\)


\(n\left( n+2\right)+1=\left( n+1\right)^2\),其中n为正整数。


\(x=(2m+1)(2n+1),其中x为奇合数,m,n为正整数。\)



\(设n为任急正整数,则\left( n+1\right)^2-n\left( n+2\right)=1,\)

\(设n为任意正整数,\)\(则\left( n^2+1\right)^2-\ n^2\left( \ n^2+2\right)=1{,}\)
  \(2^2-1^2\times3=1,\)
  \(5^2-2^2\times6=1,\)
  \(10^2-3^2\times11=1,\)
  \(17^2-4^2\times18=1,\)
  \(26^2-5^2\times27=1,\)
  \(37^2-6^2\times38=1,\)

\(设n,a为任意正整数,则\left( n^a+1\right)^2-n^a\left( n^a+2\right)=1{,}\)




发表于 2023-8-18 21:33 | 显示全部楼层
回复 支持 反对

使用道具 举报

发表于 2023-8-18 21:35 | 显示全部楼层
回复 支持 反对

使用道具 举报

发表于 2023-8-18 21:37 | 显示全部楼层
回复 支持 反对

使用道具 举报

发表于 2023-8-18 21:42 | 显示全部楼层
中科大学生证明了BSD猜想

http://www.mathchina.com/bbs/for ... &fromuid=147652
回复 支持 反对

使用道具 举报

 楼主| 发表于 2023-8-19 10:20 | 显示全部楼层
本帖最后由 朱明君 于 2023-8-19 03:09 编辑

\(设n为任意正整数,\)\(则\left( n^2+1\right)^2-\ n^2\left( \ n^2+2\right)=1{,}\)
\(2^2-1^2\times3=1,\)
\(5^2-2^2\times6=1,\)
\(10^2-3^2\times11=1,\)
\(17^2-4^2\times18=1,\)
\(26^2-5^2\times27=1,\)
\(37^2-6^2\times38=1,\)
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-24 03:06 , Processed in 0.087539 second(s), 15 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表