|
本帖最后由 天山草 于 2023-10-21 18:30 编辑
此题是一个三角函数变换的题。在实际工作中,如果公司老板需要你立即给出解答,而你又一时半会的做不出来,急得一头汗水,这时可以试试下面这个方法。
题目要求是锐角三角形,这不对,应该是钝角三角形,共有两种钝角三角形(图 1 和图 2,它们既不全等,也不相似),它们都能满足题给条件,但是这两种三角形对于所求值的答案是不同的。
对于图 1,所求之值为 \(\frac{111+4\sqrt{35}}{72}\); 对于图 2,所求之值为 \(\frac{111-4\sqrt{35}}{72}\)。
下面对于图 1 编程如下。(对于图 2 编程,只须在下面程序的第 19 行将 u = FullSimplify@Part[W, 5]; v = Simplify@Part[W, 6]; 中的 5 改为 1,6 改为 2 即可)。
- Clear["Global`*"];(*令B为坐标原点,C为1点,kAB=u^2,kAC=v^2*)
- \!\(\*OverscriptBox[\(b\), \(_\)]\) = b = 0; \!\(\*OverscriptBox[\(c\), \(_\)]\) = c = 1; kAB = u^2; kAC = v^2;
- k[a_, b_] := (a - b)/(\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\)); (*复斜率定义*)
- (*过A1点、复斜率等于k1的直线,与过A2点、复斜率等于k2的直线的交点:*)
- Jd[k1_, a1_, k2_, a2_] := -((k2 (a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\)) - k1 (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[k1_, a1_, k2_, a2_] := -((a1 - k1 \!\(\*OverscriptBox[\(a1\), \(_\)]\) - (a2 - k2 \!\(\*OverscriptBox[\(a2\), \(_\)]\)))/(k1 - k2));
- a = Simplify@Jd[kAB, b, kAC, c]; \!\(\*OverscriptBox[\(a\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[kAB, b, kAC, c];
- a = -((u^2 (v^2 - 1))/(u^2 - v^2)); \!\(\*OverscriptBox[\(a\), \(_\)]\) = (v^2 - 1)/(v^2 - u^2); Print["a = ", a];
- d = Simplify@Jd[1, b, -1, a]; \!\(\*OverscriptBox[\(d\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[1, b, -1, a];
- e = Simplify@Jd[-k[a, c], b, k[a, c], c]; \!\(\*OverscriptBox[\(e\), \(_\)]\) = Simplify@\!\(\*OverscriptBox[\(Jd\), \(_\)]\)[-k[a, c], b, k[a, c], c];
- BD = d; AD2 = Simplify[(a - d) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(d\), \(_\)]\))]; AD = ((u^2 - 1) (v^2 - 1))/(
- 2 (u^2 - v^2)) I; Print["AD = ", AD];
- AC2 = Simplify[(a - c) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(c\), \(_\)]\))]; AC = ((1 - u^2) v)/( u^2 - v^2); Print["AC = ", AC];AB2 = Simplify[(a - b) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(b\), \(_\)]\))]; AB = (u (v^2 - 1))/( u^2 - v^2); Print["AB = ", AB];
- AE2 = Simplify[(a - e) (\!\(\*OverscriptBox[\(a\), \(_\)]\) - \!\(\*OverscriptBox[\(e\), \(_\)]\))]; AE = -(((v^2 - 1) (u^2 + v^2))/(2 v (v^2 - u^2))); Print["AE = ", AE];
- BE2 = Simplify[(b - e) (\!\(\*OverscriptBox[\(b\), \(_\)]\) - \!\(\*OverscriptBox[\(e\), \(_\)]\))]; BE = -((v^2 - 1)/(2 v)) I; Print["BE = ", BE];
- BC = 1;CE2 = Simplify[(c - e) (\!\(\*OverscriptBox[\(c\), \(_\)]\) - \!\(\*OverscriptBox[\(e\), \(_\)]\))]; CE = -((v^2 + 1)/( 2 v)); Print["CE = ", CE];
- cosC = CE/BC; sinC = BE/BC; cosB = BD/AB; sinB = AD/AB; cosA = -(AE/AB); sinA = BE/AB;
- Print["cosA = ", cosA, ", sinA = ", sinA, ", \!\(\*SuperscriptBox[\(cos\), \(2\)]\)A + \!\(\*SuperscriptBox[\(sin\), \(2\)]\)A= ", Simplify[cosA^2 + sinA^2]];
- Print["cosB = ", cosB, ", sinB = ", sinB, ", \!\(\*SuperscriptBox[\(cos\), \(2\)]\)B + \!\(\*SuperscriptBox[\(sin\), \(2\)]\)B= ", Simplify[cosB^2 + sinB^2]];Print["cosC = ", cosC, ", sinC = ", sinC, ", \!\(\*SuperscriptBox[\(cos\), \(2\)]\)C + \!\(\*SuperscriptBox[\(sin\), \(2\)]\)C= ", Simplify[cosC^2 + sinC^2]];
- W = {u, v} /. Simplify@Solve[{cosA^2 + cosB^2 + 2 sinA sinB cosC == 15/8, cosB^2 + cosC^2 + 2 sinB sinC cosA == 14/9}, {u, v}] // Flatten; u = FullSimplify@Part[W, 5]; v = Simplify@Part[W, 6];
- Print["u = ", u, " = ", N[u]]; Print["v = ", v, " = ", N[v]];
- Print["\!\(\*SuperscriptBox[\(cosA\), \(2\)]\)+\!\(\*SuperscriptBox[\(cosB\), \(2\)]\)+2sinAsinBcosC = ", Simplify[cosA^2 + cosB^2 + 2 sinA sinB cosC]];
- Print["\!\(\*SuperscriptBox[\(cosB\), \(2\)]\)+\!\(\*SuperscriptBox[\(cosC\), \(2\)]\)+2sinBsinCcosA = ", Simplify[cosB^2 + cosC^2 + 2 sinB sinC cosA]];
- y = FullSimplify[cosC^2 + cosA^2 + 2 sinC sinA cosB];
- Print["\!\(\*SuperscriptBox[\(cosC\), \(2\)]\)+\!\(\*SuperscriptBox[\(cosA\), \(2\)]\)+2sinCsinAcosB = ", y, " \[TildeTilde] ", N[y]];
复制代码
程序运行结果:
根据算出的复斜率\(u、v\) 的值,将其代入三个角的正余弦表达式中,还可算出各个角的正弦值和余弦值。
对于图 2 的钝角三角形,将上述程序的第 19 行中 u = FullSimplify@Part[W, 5]; v = Simplify@Part[W, 6]; 的 5 改为 1,6 改为 2,运行结果为 (只列出最后几句结果,前面的均与上面程序运行结果相同):
说明: 程序中的解方程语句是为了求出 \(u\) 和 \(v\) 的值,共有 5 组解,但是由此确定的三角形的形状并没有 5 种,而只有两种。 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?注册
x
|