|

楼主 |
发表于 2024-1-10 11:05
|
显示全部楼层
本帖最后由 elim 于 2024-1-9 20:33 编辑
提示 \(\displaystyle\sum_{n=0}^\infty\sum_{k=1}^\infty\frac{1}{a^nk^2}=\big(\sum_{n=0}^\infty\frac{1}{a^n}\big)\big(\sum_{k=1}^\infty\frac{1}{k^2}\big)\)
回到主题:期待反馈
题:求和 \(\displaystyle\sum_{k=1}^\infty\frac{(-1)^{k-1}}{k}\sum_{n=0}^\infty\frac{1}{k2^n+1}.\)
所论二重级数绝对收敛(被优级数\(\displaystyle\sum_{k=1}^{\infty}\frac1{k^2}\sum_{n=0}^{\infty}\frac1{2^n}\).控制)因而可重排:
\(\small\displaystyle\sum_{n=0}^{\infty}\sum_{k=1}^{\infty}\frac{(-1)^{k-1}}{k(k2^n+1)}.\)
令\(f_n(x)=\small\displaystyle\sum_{k=1}^{\infty}\frac{(-1)^{k-1}x^{k2^n+1}}{k(k2^n+1)}\;(x\in[0,1],\;f(x)=\displaystyle\sum_{n=0}^{\infty}f_n(x)).\)
由 \(f_n'(x)=\displaystyle\sum_{k=1}^{\infty}\frac{(-1)^{k-1}(x^{2^n})^k}k=\ln(1+x^{2^n}).\) 知,
\(\displaystyle f'(x)=\sum_{n=0}^{\infty}\ln(1+x^{2^n})=\ln\left(\prod_{n=0}^{\infty}(1+x^{2^n})\right)\)
\(\qquad\;\;=\ln(1+x+x^2+x^3+\cdots)=-\ln(1-x)\)
可见\(f(1)=\small\displaystyle -\int_0^1\ln(1-x)\,dx=1.\) |
|