数学中国

 找回密码
 注册
搜索
热搜: 活动 交友 discuz
查看: 2174|回复: 1

新年一题

[复制链接]
发表于 2024-2-1 19:18 | 显示全部楼层 |阅读模式
解函数不定方程:
A^(6n+3)+B^(6n+2)=C^(6n+1)
其中一个答案是:
A=2^(36n^2+12n+2)*uv*[(u^(6n+3)-v^(6n+3)]^(12n+2)*[(u^(6n+3)+v^(6n+3)]^(36n^2+12n)
B=2^(36n^2+18n+2)*[(u^(6n+3)-v^(6n+3)]^(12n+4)*[(u^(6n+3)+v^(6n+3)]^(36n^2+18n)
C=2^(36n^2+24n+4)*[(u^(6n+3)-v^(6n+3)]^(12n+6)*[(u^(6n+3)+v^(6n+3)]^(36n^2+24n+2)
其中,u、v为正整数,且u>v
您需要登录后才可以回帖 登录 | 注册

本版积分规则

Archiver|手机版|小黑屋|数学中国 ( 京ICP备05040119号 )

GMT+8, 2025-6-20 17:59 , Processed in 0.073295 second(s), 16 queries .

Powered by Discuz! X3.4

Copyright © 2001-2020, Tencent Cloud.

快速回复 返回顶部 返回列表