|
注记:\(\mathbb{Q}=\{{\small\dfrac{p}{q}}\mid p,q\in\mathbb{Z},\; q\ne 0\}=\{{\small\dfrac{p}{q}}\mid p,q\in\mathbb{Z},\,q\ge 1=\gcd(p,q)\}\)
所以可以认为 \(\exists p,q\in\mathbb{N}^+(\sqrt{2}={\small\dfrac{p}{q}})\wedge(\gcd(p,q)=1)\)
是 \(\sqrt{2}\)为无理数的否命题.
反正法:若\(P,Q\)是二命题,且\(\lnot P\implies Q\wedge(\lnot Q)\equiv\text{假},\;\)则\(P\)真. |
|