|
谢谢 tmduser!挺好的方法。三角形ANC与三角形DNC全等不差条件呀!
\(我来个不添辅助线的解法。∠DCA=2a,∠DBA=b\)
\(AB=AC=CD=\sin(30^\circ+b),BC=\sin(60^\circ+2b),AD=\frac{\sin(30^\circ+b)\sin(2a)}{\cos(a)}\)
\(ΔBCD正弦定理。\frac{\sin(30^\circ + b)}{\sin(30^\circ)}=\frac{\sin(60^\circ+2b)}{\sin(60^\circ-2a+b)}=>\frac{1}{\sin(30^\circ)}=\frac{2\sin(30^\circ+b)}{\sin(60^\circ-2a+b)}\)
\(ΔABD正弦定理。\frac{\sin(30^\circ+ b)}{\cos(a-b-60^\circ)}=\frac{\sin(30^\circ+ b)\sin(2 a)}{\sin(b)\cos(a)}=>\frac{1}{\cos(a-b-60^\circ)}=\frac{2\sin(a)}{\sin(b)}\)
条件不变。30° 换一下, 好像不行? |
|