|

楼主 |
发表于 2024-7-20 20:30
|
显示全部楼层
本帖最后由 elim 于 2024-7-22 07:04 编辑
【定义1】\(\displaystyle\underset{n\to\infty}{\overline{\lim}}A_n:=\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_k\) 叫作 \(\{A_n\}\)的上极限(集);
\(\qquad\quad\;\;\displaystyle\underset{n\to\infty}{\underline{\lim}}A_n:=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_k\) 叫作 \(\{A_n\}\)的下极限(集);
【定理1】\(\underset{n\to\infty}{\overline{\lim}}A_n=\{m\in\mathbb{N}:\{k\mid m\in A_k\}\,是无穷集\}\)
\(\qquad\quad\;\;\underset{n\to\infty}{\underline{\lim}}A_n=\{m\in\mathbb{N}:\{k\mid m\not\in A_k\}\,是有限集\}\)
【证:】\(m\in\displaystyle\bigcap_{n=1}^\infty\bigcup_{k=n}^\infty A_n\iff \forall n\in\mathbb{N}\,(m\in\bigcup_{k=n}^\infty A_k)\)
\(\;\;\iff \forall n\in\mathbb{N}\,\exists k\ge n\;(m\in A_k)\iff \{k\mid m\in A_k\}是无穷集\)\(\\\)
\(\qquad\quad\)平行地证明定理的另一半.
【推论1】\(\underset{n\to\infty}{\underline{\lim}}A_n\subseteq\underset{n\to\infty}{\overline{\lim}}A_n\)
【定义2】若\(\underset{n\to\infty}{\underline{\lim}}A_n=\underset{n\to\infty}{\overline{\lim}}A_n\),则称\(\{A_n\}\)收敛,
\(\qquad\quad\;\;\)称其上下极限的公共值为\(\{A_n\}\)的极限,记作\(\displaystyle\lim_{n\to\infty} A_n\).
【推论2】若\(\{A_n\},\{B_n\}\)收敛且\(A_n\subseteq B_n\,(\forall n),\)
\(\qquad\quad\;\;\)则 \(\displaystyle\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty A_n\subseteq\bigcup_{n=1}^\infty\bigcap_{k=n}^\infty B_n=\lim_{n\to\infty}B_n\)
【定理2】\(\displaystyle\lim_{n\to\infty}A_n = \displaystyle\bigcap_{n =1}^\infty A_n\, (\{A_n\}单调降), \)
\(\qquad\quad\;\;\displaystyle\lim_{n\to\infty}A_n=\bigcup_{n=1}^\infty A_n\,(\{A_n\}单调升)\).
【证:】若\(\{A_n\}\)单降, 令 \(B_n:=\displaystyle\bigcup_{k=n}^\infty A_k=A_n,\;C_n=\bigcap_{k=n}^\infty A_k\),则
\(\qquad\quad\;\;\displaystyle\underset{n\to\infty}{\overline{\lim}}A_n=\bigcap_{n=1}^\infty B_n=\bigcap_{n=1}^\infty A_n=C_1\subseteq\bigcup_{n=1}^\infty C_n=\underset{n\to\infty}{\underline{\lim}}A_n\)
\(\quad\therefore\quad\;\;\displaystyle\lim_{n\to\infty}A_n=\bigcap_{n=1}^\infty A_n\)
\(\qquad\quad\;\;\)仿上平行a地证明若\(\{A_n\}\)单调升, \(\displaystyle\lim_{n\to\infty}A_n = \bigcup_{n=1}^\infty A_n.\quad\square\)
【例】\(\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}=\bigcap_{n=1}^\infty\{n+1,n+2,\ldots\}\)
\(\qquad\quad=\{m\mid \forall n\,(m\in\{n+1,n+2,\ldots\})\}\)
\(\qquad\quad\subseteq \{m\mid m\in\{m+1,m+2,\ldots\}\}=\{m\mid m>m\}=\varnothing\)
设\(\Omega\)是某成为论域的集合,以下讨论的集合都是\(\Omega\)的子集。
【定义3】\(\chi:\Omega\to \mathbb{R},\;\chi_A(x)=\begin{cases}1,& x\in A;\\0,& x\in A^c.\end{cases}\)
\(\qquad\quad\;\,\)叫作\(A\)的特征函数.
【注记】易见 \(\chi_A(\Omega)\subseteq\{0,1\},\;\;A=B\iff\chi_A=\chi_B,\)
\(\qquad\quad\displaystyle\chi_{(\bigcap_{\alpha\in\Lambda}A_{\alpha})}=\min\{\chi_{A_\alpha}\mid\alpha\in\Lambda\},\;\chi_{(\bigcup_{\alpha\in\Lambda}A_{\alpha})}=\max\{\chi_{A_\alpha}\mid\alpha\in\Lambda\}\)
【定理3】\(\displaystyle\lim_{n\to\infty} A_n = A\iff \lim_{n\to\infty}\chi_{A_n}=\chi_A\)
\(\qquad\quad\)其中特征函数的收敛是逐点收敛.
|
|