|
\(\because\;\forall m\,\exists N=m\,\forall n> N\,(m\not\in \{n+1,n+2,\ldots\})\)
\(\therefore\;\;\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}=\phi\)
简单说来,随着\(n\)的无限制增大,属于 \(\{n+1,n+2,\ldots\}\) 的自然数的门槛也无限增高,
以至于任何给定的自然数都不能属于 \(N_{\infty}=\displaystyle\lim_{n\to\infty}\{n+1,n+2,\ldots\}\)
蠢疯是资深集论白痴, 错就错在它生来种就贼孬。不过它要是戒吃狗屎,端正学风,
痛改前非,或许能活着理解 \(N_{\infty}=\varnothing\). 别寄太大希望。 |
|