|
【逐点排查定理】:
\((1)\quad(\forall \alpha\in E\,\exists \beta\in\Lambda \;(\alpha\in A_\beta))\implies E\cap\displaystyle\bigcup_{\lambda\in\Lambda}A_\lambda = E\)
\((2)\quad(\forall \alpha\in E\,\exists \beta\in\Lambda \;(\alpha\not\in A_\beta))\implies E\cap\displaystyle\bigcap_{\lambda\in\Lambda}A_\lambda=\phi\)
【应用】 取 \(E=\Lambda = \mathbb{N},\;A_n=\{m\in\mathbb{N}:m>n\}\,(n\in\mathbb{N})\),
\(\qquad\;\quad\)据(2) 立得 \(\displaystyle\bigcap_{n=1}^\infty A_n=\phi\)
【注记】(1)是说若\(E\)的任意点均不会不属于任何\(A_\beta\), 则\(E\subseteq\displaystyle\bigcup_{\lambda\in\Lambda}A_\lambda\)
\(\qquad\quad\:\)(2)是说若\(E\)的点都有各自不属于的集族\(\{A_\lambda\mid \lambda\in\Lambda\}\)
\(\qquad\quad\:\)的成员,则\(E\)与\(\displaystyle\bigcap_{\lambda\in\Lambda}A_\lambda\)不交.
\(\qquad\quad\:\)此定理是外延公理,子集合定义, 集合交、并定义的直接推论。
\(\qquad\quad\:\)只有集论白痴不会证明.
|
|