|
雷劈数——卡普利加数——Kaprekar 数。
{1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728, 4879, 4950, 5050, 5292, 7272, 7777, 9999, 17344, 22222, 38962, 77778, 82656, 95121, 99999, 142857, 148149, 181819, 187110, 208495, 318682, 329967,
351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170, 538461, 609687, 627615, 643357, 648648, 670033, 681318, 791505, 812890, 818181, 851851, 857143, 961038, 994708, 999999,
4444444, 4927941, 5072059, 5479453,5555556, 8161912, 9372385, 9999999,11111112, 13641364,16590564, 19273023, 19773073, 24752475, 25252525, 30884184, 36363636, 38883889, 44363341,
44525548, 49995000, 50005000, 55474452, 55636659, 61116111, 63636364, 69115816, 74747475, 75247525, 80226927, 80726977, 83409436, 86358636, 88888888, 91838088, 94520547,99999999,
- k[a_] := Module[{n = a^2}, MemberQ[Plus @@ # & /@ Select[Table[{Floor[n/10^j], FractionalPart[n/10^j] 10^j}, {j, IntegerLength[n] - 1}], #[[2]] != 0 &], a]]; Select[Range[10^9], k]
复制代码
详见——OEIS——A053816。
[code]A053816的公式——Select[Range[540000], Total[FromDigits /@ TakeDrop[IntegerDigits[#^2], Floor[IntegerLength[#^2]/2]]] == # &]——有问题。[code] |
|