|
elim于2025-2-2 21:56再再次发帖说【若良序集\(\mathbb{N}\)有超限自然数,则有最小超限自然数v.。若自然数n的后继为v,那么n比最小超穷数 v更小因而是有限自然数.但有限自然数不能有超限后继.所以 v 不是任何自然数后继.据皮亚诺公理,只有0不是任何自然数的后继.所以 v 必然不是自然数。\(\{n+j\}\)是\(\{n\}\).的子序列, 故两者极限相等,并无前驱后继或先后大小之分别.蠢疯混世百年仍为数盲实乃种孬使然,不足为怪。】
由于elim长期顽固坚持【自然数皆有限数】、【无穷交就是一种臭变】、【\(\displaystyle\lim_{n \to \infty}\{ n+1,n+2,…\}=\phi\)等非数学观点不仅拒绝接受\(\infty\subset\mathbb{N}\),也拒绝接受超穷自然数的存在。下边我们以皮亚诺公理为依据,论证自然数集中无限,自然数集应包含超穷自然数。
1、自然数集是无限集
【证明:】因为自然数集\(\mathbb{N}\)与其真子集\(\{奇数集\}\)、\(\{偶数集\}\)对等。所以是无限集。【证毕】(注:自然数集是无限集,在现行数学教育的框架下,的是小学四年级必学必考的内容)
2、在皮亚诺自然数系中\(\infty\subset\mathbb{N}\)
【证明:】根据自然数列\(\{A_k=k\}\)递增数列,所以\(\displaystyle\lim_{n \to \infty} A_n\)、\(\displaystyle\lim_{n \to \infty} n\),所以\(\infty\subset\mathbb{N}\)!【证毕】(注:这与小学生熟知的自然数中没有最大,只有更大是一致的)。
3、自然数集应包含超穷自然数。
【证明:】因为\(\displaystyle\lim_{n \to \infty} n\)的客观存,否则逆用皮亚诺公理,\(\displaystyle\lim_{n \to \infty} n\)的超前趋\(\displaystyle\lim_{n \to \infty} n\)-1=\(\displaystyle\lim_{n \to \infty} (n-1)\)亦不存在,同理\(\displaystyle\lim_{n \to \infty}(n-1)\)的前趋\(\displaystyle\lim_{n \to \infty}( n-2)\)亦不存在,……,同样的道理k+1不存在,k亦不存在,……,2不存在,1亦不存在,1不存在0也不存在,所以不含不含无穷大的自然数集是空集。这与皮亚诺意义下自然数非空矛盾。故\(\displaystyle\lim_{n \to \infty} n\)是逻辑确定的客观存在!由\(\displaystyle\lim_{n \to \infty} n\)的确定性知,它的后继\(\displaystyle\lim_{n \to \infty} n\)+1亦是客观存在的,\(\displaystyle\lim_{n \to \infty} n\)+1的后继\(\displaystyle\lim_{n \to \infty} n\)+1+1=\(\displaystyle\lim_{n \to \infty} (n+2)\)也是存在的。……,同理\(\displaystyle\lim_{n \to \infty} (n+j)\)也是存在的,……,所以自然数集应包含超穷自然数。【证毕】
4、由含超穷自然数的自然数集:
\(\mathbb{N}_P=\)\(\{1,2,…,k,k+1,…,\displaystyle\lim_{n \to \infty} n\),\(\displaystyle\lim_{n \to \infty} n\)+1,…,\(\displaystyle\lim_{n \to \infty} n\)+j,……、\(\}\)一般表达式知最小超限自然数v.= \(\displaystyle\lim_{n \to \infty} n\)+1,所以不管\(n\in\mathbb{N}\)是否趋向无穷n都远小于\(\displaystyle\lim_{n \to \infty} n\)+1=v。须强调的是v.= \(\displaystyle\lim_{n \to \infty} n\)+1的前趋是\(\displaystyle\lim_{n \to \infty} n\)(这与康托尔实正整数理论略有一点区别),所以v是无穷自然数\(\displaystyle\lim_{n \to \infty} n\)的后继。因此v是自然数!注意在含超穷自然数的集合中\(\{\displaystyle\lim_{n \to \infty} (n+j)\}\)不是\(\{n\}\)的子列,故\(\{\displaystyle\lim_{n \to \infty} (n+j)\}\)与\(\{n\}\)的极限不相等!
elim无论是立论还是驳论,都没有现行数学的理论支撑,都有论题荒谬,论点扯淡,论据胡诌,论证乏力,逻辑混乱,语言流氓的的特点!所以elim才是十足的虽读大书【仍为数盲实乃种孬使然。】
|
|